skip to main content


Search for: All records

Award ID contains: 1856755

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Given a suitable solutionV(tx) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data$$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$u(0,x)V(0,x)+H-1(R). Our conditions onVdo include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$V(0,x)H5(R/Z)satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.https://doi.org/10.1088/1361-6544/ac37f5) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4) where$$V\equiv 0$$V0. In that setting, it is known that$$H^{-1}(\mathbb {R})$$H-1(R)is sharp in the class of$$H^s(\mathbb {R})$$Hs(R)spaces.

     
    more » « less
  2. Abstract We show that solutions to the Ablowitz–Ladik system converge to solutions of the cubic nonlinear Schrödinger equation for merely L 2 initial data. Furthermore, we consider initial data for this lattice model that excites Fourier modes near both critical points of the discrete dispersion relation and demonstrate convergence to a decoupled system of nonlinear Schrödinger equations. 
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  3. Using the two-dimensional nonlinear Schrödinger equation as a model example, we present a general method for recovering the nonlinearity of a nonlinear dispersive equation from its small-data scattering behavior. We prove that under very mild assumptions on the nonlinearity, the wave operator uniquely determines the nonlinearity, as does the scattering map. Evaluating the scattering map on well-chosen initial data, we reduce the problem to an inverse convolution problem, which we solve by means of an application of the Beurling–Lax Theorem. 
    more » « less
  4. Abstract We consider the derivative nonlinear Schrödinger equation in one spatial dimension, which is known to be completely integrable. We prove that the orbits of $L^2$ bounded and equicontinuous sets of initial data remain bounded and equicontinuous, not only under this flow, but also under the entire hierarchy. This allows us to remove the small-data restriction from prior conservation laws and global well-posedness results. 
    more » « less