skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrating Parsons Puzzles within Scratch Enables Efficient Computational Thinking Learning
A literature review revealed that students learning computational thinking via Scratch often require substantial teacher support. We surveyed grade 6-9 teachers to learn their perceptions of student engagement with computational thinking (CT) and how well their needs are met by existing CT learning systems. The results led us to extend the trend of balancing Scratch’s agency with structure to better serve learners and reduce burden on teachers aiming to learn and teach CT. In this paper, we review architecture and implementation strategies developed to integrate Parsons Programming Puzzles (PPPs) with Scratch, and then analyze their effects on adults, who crucially influence the education of their children. The results from our pilot study suggest PPPs catalyze CT motivation, reduce extraneous cognitive load, and increase learning efficiency without jeopardizing performance on transfer tasks.  more » « less
Award ID(s):
1815494 1563555
PAR ID:
10381016
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Research and practice in technology enhanced learning
ISSN:
1793-7078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We surveyed grade 6-9 teachers to learn teacher perceptions of student engagement with computational thinking (CT) and how well their needs are met by existing CT learning systems. The results and a literature review lead us to extend the trend of balancing Scratch’s agency with structure to better serve learners and reduce burden on teachers aiming to learn and teach CT. In this paper, we integrate Parsons Programming Puzzles (PPPs) with Scratch and analyze the effects on adults, who crucially influence the education of their children. The results from our small pilot study suggest PPPs catalyze CT motivation, reduce extraneous cognitive load, and increase learning efficiency without jeopardizing performance on transfer tasks. 
    more » « less
  2. Using a design thinking approach, we surveyed and interviewed grade 6-9 teachers on their experience with Scratch and Parsons Programming Puzzles (PPP). The results lead us to extend Scratch with gameful PPP functionality focused on individual computational thinking (CT) concepts. In this paper, we vary elements of PPPs presented to 624 adult learners to identify those yielding manageable cognitive load (CL), and maximum CT motivation and learning efficiency, for a general populace. Findings indicate PPPs with feedback and without distractors limit CL, those with feedback produce highest CT motivation, and those with an isolated block palette and without distractors produce highest CT learning efficiency. We analyze study data across nine conditions to offer insight to those developing PPP systems with the aim to advance equitable CT education for all. 
    more » « less
  3. China, C.' Tan; Chan, C.; Kali, Y. (Ed.)
    Teachers often find it challenging to learn computational thinking (CT) and integrate it with classroom learning. In this systematic review, we focus on how professional learning experiences have supported K-12 teachers to integrate CT into their classrooms. The findings suggest some effective strategies for building professional learning experiences but highlight the need for more agreement about the nature of CT. 
    more » « less
  4. To investigate learning system elements and progressions that affect computational thinking (CT) learning in block-based environments, we developed a Parsons Programming Puzzle (PPP) module within Scratch with scaffolding customized via a novel Blockly grammar. By varying the presentation and types of feedback encountered between- and within-subjects in a study of 579 adults, we identified features and scaffolding strategies that yield manageable cognitive load (CL), improved CT learning efficiency, and increased motivation, for a general populace. Findings indicate: 1) PPPs with feedback induce lowest CL; 2) an isolated palette, correctness feedback, and fading correctness feedback increase learning efficiency; 3) fading scaffolding can increase CT motivation. We analyze 12 conditions to provide insight to those developing block-based PPP systems with the aim to advance equitable CT education for all. 
    more » « less
  5. Integrating computational thinking (CT) in the science classroom presents the opportunity to simultaneously broaden participation in computing, enhance science content learning, and engage students in authentic scientific practice. However, there is a lot more to learn on how teachers might integrate CT activities within their existing curricula. In this work, we describe a process of co-design with researchers and teachers to develop CT-infused science curricula. Specifically, we present a case study of one veteran physics teacher whose conception of CT during a professional development institute changed over time. We use this case study to explore how CT is perceived in physics instruction, a field that has a long history of computational learning opportunities. We also discuss how a co-design process led to the development of a lens through which to identify fruitful opportunities to integrate CT activities in physics curricula which we term computational transparency–purposefully revealing the inner workings of computational tools that students already use in the classroom. 
    more » « less