skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Liquid–liquid criticality in the WAIL water model
The hypothesis that the anomalous behavior of liquid water is related to the existence of a second critical point in deeply supercooled states has long been the subject of intense debate. Recent, sophisticated experiments designed to observe the transformation between the two subcritical liquids on nano- and microsecond time scales, along with demanding numerical simulations based on classical (rigid) models parameterized to reproduce thermodynamic properties of water, have provided support to this hypothesis. A stronger numerical proof requires demonstrating that the critical point, which occurs at temperatures and pressures far from those at which the models were optimized, is robust with respect to model parameterization, specifically with respect to incorporating additional physical effects. Here, we show that a liquid–liquid critical point can be rigorously located also in the WAIL model of water [Pinnick et al., J. Chem. Phys. 137, 014510 (2012)], a model parameterized using ab initio calculations only. The model incorporates two features not present in many previously studied water models: It is both flexible and polarizable, properties which can significantly influence the phase behavior of water. The observation of the critical point in a model in which the water–water interaction is estimated using only quantum ab initio calculations provides strong support to the viewpoint according to which the existence of two distinct liquids is a robust feature in the free energy landscape of supercooled water.  more » « less
Award ID(s):
1856704
PAR ID:
10381028
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
157
Issue:
2
ISSN:
0021-9606
Page Range / eLocation ID:
024502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The hypothesis that water has a second critical point at deeply supercooled conditions was formulated to provide a thermodynamically consistent interpretation of numerous experimental observations. A large body of work has been devoted to verifying or falsifying this hypothesis, but no unambiguous experimental proof has yet been found. Here, we use histogram reweighting and large-system scattering calculations to investigate computationally two molecular models of water, TIP4P/2005 and TIP4P/Ice, widely regarded to be among the most accurate classical force fields for this substance. We show that both models have a metastable liquid-liquid critical point at deeply supercooled conditions and that this critical point is consistent with the three-dimensional Ising universality class. 
    more » « less
  2. Abstract Liquid water can be supercooled up to about 50~K below the melting point before undergoing homogeneous ice nucleation. Based on experimental thermodynamic observations and computer simulations it was hypothesized that below this temperature and at pressures of several kbar water undergoes a liquid-liquid phase transition (LLPT) and the transition line ends at a second critical point. However, challenges in experiments and simulations at such deep cooling leave doubts about the nature of the LLPT and the existence of the critical point.Here we use molecular dynamics simulations with a highly accurate and computationally efficient polarizable water model to establish the character of the LLPT and identify the location of the second critical point. Our microsecond-long simulations provide the first direct evidence of a well-defined moving interface between low-density and high-density water at conditions near the phase boundary. This is the ultimate proof of a first-order transition between two liquid phases with distinct free energy basins separated by a barrier, resolving a long-standing debate. These results provide new perspectives on supercooled water under pressure simulated with an accurate and realistic model suitable for studies of water in confined geological and biological environments. 
    more » « less
  3. Abstract Much attention has been devoted to water’s metastable phase behavior, including polyamorphism (multiple amorphous solid phases), and the hypothesized liquid-liquid transition and associated critical point. However, the possible relationship between these phenomena remains incompletely understood. Using molecular dynamics simulations of the realistic TIP4P/2005 model, we found a striking signature of the liquid-liquid critical point in the structure of water glasses, manifested as a pronounced increase in long-range density fluctuations at pressures proximate to the critical pressure. By contrast, these signatures were absent in glasses of two model systems that lack a critical point. We also characterized the departure from equilibrium upon vitrification via the non-equilibrium index; water-like systems exhibited a strong pressure dependence in this metric, whereas simple liquids did not. These results reflect a surprising relationship between the metastable equilibrium phenomenon of liquid-liquid criticality and the non-equilibrium structure of glassy water, with implications for our understanding of water phase behavior and glass physics. Our calculations suggest a possible experimental route to probing the existence of the liquid-liquid transition in water and other fluids. 
    more » « less
  4. The molecular origins of water’s anomalous properties have long been a subject of scientific inquiry. The liquid–liquid phase transition hypothesis, which posits the existence of distinct low-density and high-density liquid states separated by a first-order phase transition terminating at a critical point, has gained increasing experimental and computational support and offers a thermodynamically consistent framework for many of water’s anomalies. However, experimental challenges in avoiding crystallization near the postulated liquid–liquid critical point have focused attention to water’s canonical glassy states: low-density and high-density amorphous ice. Here, we use two Deep Potential machine-learning models, trained on the Strongly Constrained and Appropriately Normed density functional and the highly accurate Many-Body Polarizable potential, to conduct an investigation of water’s glassy phenomenology based on quantum mechanical calculations. Despite not being explicitly trained on amorphous ices, both models accurately capture the structure and transformation of the water glasses, including their interconversion along different thermodynamic paths. Isobaric quenching of liquid water at various pressures generates a continuum of intermediate amorphous ices and density fluctuations increase near the liquid–liquid critical pressure. The glass transition temperatures of the amorphous ices produced at different pressures exhibit two distinct branches, corresponding to low-density and high-density amorphous ice behaviors, consistent with experiment and the liquid–liquid transition hypothesis. Extrapolating transformation pressures from isothermal compressions to experimental compression rates brings our simulations into excellent agreement with data. Our findings demonstrate that machine-learning potentials trained on equilibrium phases can effectively model nonequilibrium glassy behavior and pave the way for studying long-timescale, out-of-equilibrium processes with quantum mechanical accuracy. 
    more » « less
  5. A fundamental and much-debated issue in glass science is the existence and nature of liquid–liquid transitions in glass-forming liquids. Here, we report the existence of a novel reentrant structural transition in a S-rich arsenic sulfide liquid of composition As 2.5 S 97.5 . The nature of this transition and its effect on viscosity are investigated in situ using a combination of differential scanning calorimetry and simultaneous Raman spectroscopic and rheometric measurements. The results indicate that, upon heating significantly above its glass transition temperature (261 K), the constituent [Formula: see text] sulfur chains in the structure of the supercooled liquid first undergo a [Formula: see text] chain-to-ring conversion near ∼383 K, which is exothermic in nature. Further heating above 393 K alters the equilibrium to shift in the opposite direction toward an endothermic ring-to-chain conversion characteristic of the well-known λ-transition in pure sulfur liquid. This behavior is attributed to the competing effects of enthalpy of mixing and conformational entropy of ring and chain elements in the liquid. The existence of reentrant structural transitions in glass-forming liquids could provide important insights into the thermodynamics of liquid–liquid transitions and may have important consequences for harnessing novel functionalities of derived glasses. 
    more » « less