skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Long‐Range Multi‐Year Infrasonic Detection of Eruptive Activity at Mount Michael Volcano, South Sandwich Islands
Abstract Mount Michael stratovolcano, South Sandwich Islands is extremely remote and challenging to observe, but eruptive activity has been sporadically observed since 1820 and captured by satellite methods since 1989. We identify long‐range infrasound signals recorded by the International Monitoring System attributable to episodes of persistent eruptive activity at Mount Michael. Analysis of multi‐year (2004–2020) infrasound array data at station IS27, Antarctica (range 1,672 km) reveals candidate signals especially from May 2005 to January 2008 and from May 2016 to April 2018. By combining ray‐tracing with empirical climatologies and atmospheric specifications, we show that systematic variations in the observed backazimuth of the signals (at IS27) are broadly consistent with annual variability in stratospheric propagation conditions for a source at Mount Michael. Observed signal amplitudes combined with transmission loss estimates are consistent with moderate explosive eruption. We highlight a selection of infrasound signals that correspond to satellite observation of eruptions.  more » « less
Award ID(s):
1847736
PAR ID:
10381082
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
7
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In December 2018, Mount Etna (Italy) experienced a period of increased eruptive activity that culminated in a fissure eruption on the southeast flank. After the onset of the flank eruption, the peak frequency of the summit infrasound signals decreased while resonance increased. We invert infrasound observations for crater geometry and show that crater depth and radius increased during the eruption, which suggests that the flank eruption drained magma from the summit and that eruptive activity led to erosion of the crater wall. By inverting the entire infrasound amplitude spectra rather than just the peak frequency, we are able to place additional constraints on the crater geometry and invert for, rather than assume, the crater shape. This work illustrates how harmonic infrasound observations can be used to obtain high‐temporal‐resolution information about crater geometry and can place constraints on complex processes occurring in the inaccessible crater region during eruptive activity. 
    more » « less
  2. null (Ed.)
    Abstract Erosion, hydrothermal activity, and magmatism at volcanoes can cause large and unexpected mass wasting events. Large fluidized debris flows have occurred within the past 6000 yr at Mount Adams, Washington, and present a hazard to communities downstream. In August 2017, we began a pilot experiment to investigate the potential of infrasound arrays for detecting and tracking debris flows at Mount Adams. We deployed a telemetered four-element infrasound array (BEAR, 85 m aperture), ~11 km from a geologically unstable area where mass wasting has repeatedly originated. We present a preliminary analysis of BEAR data, representing a survey of the ambient infrasound and noise environment at this quiescent stratovolcano. Array processing reveals near continuous and persistent infrasound signals arriving from the direction of Mount Adams, which we hypothesize are fluvial sounds from the steep drainages on the southwest flank. We interpret observed fluctuations in the detectability of these signals as resulting from a combination of (1) wind-noise variations at the array, (2) changes in local infrasound propagation conditions associated with atmospheric boundary layer variability, and (3) changing water flow speeds and volumes in the channels due to freezing, thawing, and precipitation events. Suspected mass movement events during the study period are small (volumes <105  m3 and durations <2 min), with one of five visually confirmed events detected infrasonically at BEAR. We locate this small event, which satellite imagery suggests was a glacial avalanche, using three additional temporary arrays operating for five days in August 2018. Events large enough to threaten downstream communities would likely produce stronger infrasonic signals detectable at BEAR. In complement to recent literature demonstrating the potential for infrasonic detection of volcano mass movements (Allstadt et al., 2018), this study highlights the practical and computational challenges involved in identifying signals of interest in the expected noisy background environment of volcanic topography and drainages. 
    more » « less
  3. Abstract Infrasound is increasing applied as a tool to investigate magma dynamics at active volcanoes, especially at open-vent volcanoes, such as Mt. Etna (Italy), which are prodigious sources of infrasound. Harmonic infrasound signals have been used to constrain crater dimensions and track the movement of magma within the shallow plumbing system. This study interprets the remarkable systematic change in monotonic infrasound signals preceding a lava fountaining episode at Mt. Etna on 20 February 2021. We model the changing tones (0.7 to 3 Hz fundamental frequency) as a rise in the magma column from 172 ± 25 m below the crater rim to 78 ± 8 m over the course of 24 h. The infrasonic gliding disappears approximately 4 h before the onset of lava fountaining as the magma column approaches the flare of the crater and acoustic resonance is no longer supported. The featured 20 February event was just one of 52 lava fountain episodes that occurred at Mt. Etna over the course of 9 months in 2021 and was the only lava fountain episode where dramatic gliding was observed as a subsequent partial collapse of the crater prevented future resonance. The results presented here demonstrate that analysis of infrasonic gliding can be used to track the position of the magma free surface and hence may provide information on the processes taking place within the plumbing system before eruptive activity. 
    more » « less
  4. Abstract A new episode of unrest and phreatic/phreatomagmatic/magmatic eruptions occurred at Ambae volcano, Vanuatu, in 2017–2018. We installed a multi-station seismo-acoustic network consisting of seven 3-component broadband seismic stations and four 3-element (26–62 m maximum inter-element separation) infrasound arrays during the last phase of the 2018 eruption episode, capturing at least six reported major explosions towards the end of the eruption episode. The observed volcanic seismic signals are generally in the passband 0.5–10 Hz during the eruptive activity, but the corresponding acoustic signals have relatively low frequencies (< 1 Hz). Apparent very-long-period (< 0.2 Hz) seismic signals are also observed during the eruptive episode, but we show that they are generated as ground-coupled airwaves and propagate with atmospheric acoustic velocity. We observe strongly coherent infrasound waves at all acoustic arrays during the eruptions. Using waveform similarity of the acoustic signals, we detect previously unreported volcanic explosions at the summit vent region based on constant-celerity reverse-time-migration (RTM) analysis. The detected acoustic bursts are temporally related to shallow seismic volcanic tremor (frequency content of 5–10 Hz), which we characterise using a simplified amplitude ratio method at a seismic station pair with different distances from the vent. The amplitude ratio increased at the onset of large explosions and then decreased, which is interpreted as the seismic source ascent and descent. The ratio change is potentially useful to recognise volcanic unrest using only two seismic stations quickly. This study reiterates the value of joint seismo-acoustic data for improving interpretation of volcanic activity and reducing ambiguity in geophysical monitoring. 
    more » « less
  5. Abstract Volcanic tremor is a semi‐continuous seismic and/or acoustic signal that occurs at time scales ranging from seconds to years, with variable amplitudes and spectral features. Tremor sources have often been related to fluid movement and degassing processes, and are recognized as a potential geophysical precursor and co‐eruptive geophysical signal. Eruption forecasting and monitoring efforts need a fast, robust method to automatically detect, characterize, and catalog volcanic tremor. Here we develop VOlcano Infrasound and Seismic Spectrogram Network (VOISS‐Net), a pair of convolutional neural networks (one for seismic, one for acoustic) that can detect tremor in near real‐time and classify it according to its spectral signature. Specifically, we construct an extensive data set of labeled seismic and low‐frequency acoustic (infrasound) spectrograms from the 2021–2022 eruption of Pavlof Volcano, Alaska, and use it to train VOISS‐Net to differentiate between different tremor types, explosions, earthquakes and noise. We use VOISS‐Net to classify continuous data from past Pavlof Volcano eruptions (2007, 2013, 2014, 2016, and 2021–2022). VOISS‐Net achieves an 81.2% and 90.0% accuracy on the seismic and infrasound test sets respectively, and successfully characterizes tremor sequences for each eruption. By comparing the derived seismoacoustic timelines of each eruption with the corresponding eruption chronologies compiled by the Alaska Volcano Observatory, our model identifies changes in tremor regimes that coincide with observed volcanic activity. VOISS‐Net can aid tremor‐related monitoring and research by making consistent tremor catalogs more accessible. 
    more » « less