skip to main content


Title: Synthesis of an Atom‐Specifically 2 H/ 13 C‐Labeled Uridine Ribonucleoside Phosphoramidite
Abstract

A combined enzymatic and chemical synthesis of a 2′‐O‐cyanoethoxymethyl (CEM) protected [1′,6‐13C2, 5‐2H]‐uridine phosphoramidite is described herein. This is the first report of an atom‐specific nucleobase and ribose labeled 2′‐O‐CEM protected ribonucleoside phosphoramidite. Importantly, the CEM 2′‐OH protecting group permits the efficient solid‐phase synthesis of large (>60 nucleotides) RNAs with good yield and purity. The new isotope‐labeled phosphoramidite can therefore be applied to nuclear magnetic resonance (NMR) spectroscopy studies. Specifically, the [1′,6‐13C2, 5‐2H]‐uridine phosphoramidite can be used to make position‐specifically labeled RNAs for NMR analysis without complications from resonance overlap and scalar and dipolar couplings. © 2022 Wiley Periodicals LLC.

Basic Protocol 1: Synthesis of the ribonucleoside6

Basic Protocol 2: Synthesis of the ribonucleoside phosphoramidite11

 
more » « less
NSF-PAR ID:
10381137
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Current Protocols
Volume:
2
Issue:
7
ISSN:
2691-1299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Large RNAs are central to cellular functions, but characterizing such RNAs remains challenging by solution NMR. We present two labeling technologies based on [2‐19F, 2‐13C]‐adenosine, which allow the incorporation of aromatic19F‐13C spin pairs. The labels when coupled with the transverse relaxation optimized spectroscopy (TROSY) enable us to probe RNAs comprising up to 124 nucleotides. With our new [2‐19F, 2‐13C]‐adenosine‐phosphoramidite, all resonances of the human hepatitis B virus epsilon RNA could be readily assigned. With [2‐19F, 2‐13C]‐adenosine triphosphate, the 124 nt pre‐miR‐17‐NPSL1‐RNA was produced via in vitro transcription and the TROSY spectrum of this 40 kDa [2‐19F, 2‐13C]‐A‐labeled RNA featured sharper resonances than the [2‐1H, 2‐13C]‐A sample. The mutual cancelation of the chemical‐shift‐anisotropy and the dipole‐dipole‐components of TROSY‐resonances leads to narrow linewidths over a wide range of molecular weights. With the synthesis of a non‐hydrolysable [2‐19F, 2‐13C]‐adenosine‐triphosphate, we facilitate the probing of co‐factor binding in kinase complexes and NMR‐based inhibitor binding studies in such systems. Our labels allow a straightforward assignment for larger RNAs via a divide‐and‐conquer/mutational approach. The new [2‐19F, 2‐13C]‐adenosine precursors are a valuable addition to the RNA NMR toolbox and will allow the study of large RNAs/RNA protein complexes in vitro and in cells.

     
    more » « less
  2. Abstract

    This article contains detailed synthetic protocols for preparation of 5‐cyanomethyluridine (cnm5U) and 5‐cyanouridine (cn5U) phosphoramidites. The synthesis of the cnm5U phosphoramidite building block starts with commercially available 5‐methyluridine (m5C), followed by bromination of the 5‐methyl group to install the cyano moiety using TMSCN/TBAF. The cn5U phosphoramidite is obtained by regular Vorbrüggen glycosylation of the protected ribofuranose with silylated 5‐cyanouracil. These two modified phosphoramidites are suitable for synthesis of RNA oligonucleotides on solid phase using conventional amidite chemistry. Our protocol provides access to two novel building blocks for constructing RNA‐based therapeutics. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Preparation of cnm5U and cn5U phosphoramidites

    Basic Protocol 2: Synthesis, purification, and characterization of cnm5U‐ and cn5U‐modified RNA oligonucleotides

     
    more » « less
  3. Abstract

    Thesynandantiisomers of [FeIV(O)(TMC)]2+(TMC=tetramethylcyclam) represent the first isolated pair of synthetic non‐heme oxoiron(IV) complexes with identical ligand topology, differing only in the position of the oxo unit bound to the iron center. Both isomers have previously been characterized. Reported here is that thesynisomer [FeIV(Osyn)(TMC)(NCMe)]2+(2) converts into itsantiform [FeIV(Oanti)(TMC)(NCMe)]2+(1) in MeCN, an isomerization facilitated by water and monitored most readily by1H NMR and Raman spectroscopy. Indeed, when H218O is introduced to2, the nascent1becomes18O‐labeled. These results provide compelling evidence for a mechanism involving direct binding of a water moleculetransto the oxo atom in2with subsequent oxo–hydroxo tautomerism for its incorporation as the oxo atom of1. The nonplanar nature of the TMC supporting ligand makes this isomerization an irreversible transformation, unlike for their planar heme counterparts.

     
    more » « less
  4. Abstract

    Thesynandantiisomers of [FeIV(O)(TMC)]2+(TMC=tetramethylcyclam) represent the first isolated pair of synthetic non‐heme oxoiron(IV) complexes with identical ligand topology, differing only in the position of the oxo unit bound to the iron center. Both isomers have previously been characterized. Reported here is that thesynisomer [FeIV(Osyn)(TMC)(NCMe)]2+(2) converts into itsantiform [FeIV(Oanti)(TMC)(NCMe)]2+(1) in MeCN, an isomerization facilitated by water and monitored most readily by1H NMR and Raman spectroscopy. Indeed, when H218O is introduced to2, the nascent1becomes18O‐labeled. These results provide compelling evidence for a mechanism involving direct binding of a water moleculetransto the oxo atom in2with subsequent oxo–hydroxo tautomerism for its incorporation as the oxo atom of1. The nonplanar nature of the TMC supporting ligand makes this isomerization an irreversible transformation, unlike for their planar heme counterparts.

     
    more » « less
  5. Abstract

    The synthesis and characterization of (tBuPBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni−C bond of (tBuPBP)NiMe (1) is presented. An unexpected CO2cleavage process involving the formation of new B−O and Ni−CO bonds leads to the generation of a butterfly‐structured tetra‐nickel cluster (tBuPBOP)2Ni4(μ‐CO)2(6). Mechanistic investigation of this reaction indicates a reductive scission of CO2by O‐atom transfer to the boron atom via a cooperative nickel‐boron mechanism. The CO2activation reaction produces a three‐coordinate (tBuP2BO)Ni‐acyl intermediate (A) that leads to a (tBuP2BO)−NiIcomplex (B) via a likely radical pathway. The NiIspecies is trapped by treatment with the radical trap (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) to give (tBuP2BO)NiII2‐TEMPO) (7). Additionally,13C and1H NMR spectroscopy analysis using13C‐enriched CO2provides information about the species involved in the CO2activation process.

     
    more » « less