skip to main content


Title: Recent advances in materials and applications for bioelectronic and biorobotic systems
Abstract

The ultimate goal of the advancements in bioelectronics and robotics is the creation of seamless interfaces between artificial devices and biological structures. Current efforts in this area have been focused on designing biocompatible, mechanically compliant, and minimally invasive electronic and robotic systems for a range of applications, such as motor control and sweat sensing. The purposeful design of bioelectronic and robotic systems using the principles of biomimicry enables the creation of biocompatible and life‐like machines and electronics. The success of such approaches relies on the new development and applications of soft materials, as well as methods of actuation and sensing that are inspired, either by composition, function, or properties, of the naturally occurring organisms. A combination of rigid structural components, soft actuators, and flexible sensors can enable the integration of such devices with biological organisms and eventually human users. In this review, we highlight the recent advances in biomimetic soft robotics and bioelectronics. We describe the soft robotic fabrication toolbox and modern solution in bioelectronics that, in our opinion, will enable the fusion of these fields by creating robotic bioelectronic systems. Future development in this area will require substantial integration of adaptable and responsive components at the biointerfaces.

 
more » « less
Award ID(s):
1848613
NSF-PAR ID:
10445124
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
VIEW
Volume:
3
Issue:
3
ISSN:
2688-268X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Future robots and intelligent systems will autonomously navigate in unstructured environments and closely collaborate with humans; integrated with our bodies and minds, they will allow us to surpass our physical limitations. Traditional robots are mostly built from rigid, metallic components and electromagnetic motors, which make them heavy, expensive, unsafe near people, and ill‐suited for unpredictable environments. By contrast, biological organisms make extensive use of soft materials and radically outperform robots in terms of dexterity, agility, and adaptability. Particularly, natural muscle—a masterpiece of evolution—has long inspired researchers to create “artificial muscles” in an attempt to replicate its versatility, seamless integration with sensing, and ability to self‐heal. To date, natural muscle remains unmatched in all‐round performance, but rapid advancements in soft robotics have brought viable alternatives closer than ever. Herein, the recent development of hydraulically amplified self‐healing electrostatic (HASEL) actuators, a new class of high‐performance, self‐sensing artificial muscles that couple electrostatic and hydraulic forces to achieve diverse modes of actuation, is discussed; current designs match or exceed natural muscle in many metrics. Research on materials, designs, fabrication, modeling, and control systems for HASEL actuators is detailed. In each area, research opportunities are identified, which together lays out a roadmap for actuators with drastically improved performance. With their unique versatility and wide potential for further improvement, HASEL actuators are poised to play an important role in a paradigm shift that fundamentally challenges the current limitations of robotic hardware toward future intelligent systems that replicate the vast capabilities of biological organisms.

     
    more » « less
  2. The advent of wearable or body-borne electronics is rapidly changing how the Department of Defense (DoD) provides diagnostic and therapeutic medical care to the warfighter. Multiple DoD entities, from the U.S. Army Combat Capabilities Development Command’s Chemical Biological Center, to the Defense Threat Reduction Agency, are seeking bioelectronics that can transform military medicine by providing medics with valuable information to improve acute care on the battlefield, and aiding military doctors providing prolonged care. For instance, bioelectronics sensors that measure multiple signals, including heartbeat and the secretion of metabolites in perspiration, can provide remote monitoring of warfighter medical status during operations. Next-generation bioelectronics can be delivered by implantation or can be swallowed so as to deliver therapeutic medications. A seamless integration of such bioelectronics with the soft, complex, and 3D shape of the human body is inherently challenging due to the geometrical, material, and mechanical dichotomies between the two. Conventional electronics are typically fabricated via planar, top-down processes on a rigid substrate. Conversely, the human body is an irregularly shaped and highly flexible, stretchable construct. Significant research has been dedicated to overcoming this challenge, including the design of stretchable, flexible electronics, the development of electronic skin tattoos, and the manufacturing of electronic textile and bioelectronic implants. This article proposes and highlights the advancement of a multimaterial and multiscale 3D printing approach that can enable the fabrication of bioelectronics to better interface with the human body. Specifically, the article highlights the development of (a) a freeform electronics fabrication approach that allows for the creation of complex 3D systems, and (b) the multimaterial-printing of an ingestible gastric resident system that allows for non-surgical and needle-free delivery of wireless electronics into the human body. 
    more » « less
  3. Abstract

    Recent advances in flexible materials, nanomanufacturing, and system integration have provided a great opportunity to develop wearable flexible hybrid electronics for human healthcare, diagnostics, and therapeutics. However, existing medical devices still rely on rigid electronics with many wires and separate components, which hinders wireless, comfortable, continuous monitoring of health‐related human motions. Advanced materials and system integration technologies are introduced that enable soft, active wireless, thin‐film bioelectronics. This low‐modulus, highly flexible wearable electronic system incorporates a nanomembrane wireless circuit and functional chip components enclosed by a soft elastomeric membrane. It can be gently and seamlessly mounted on the skin, while offering comfortable, highly sensitive and accurate detection of head movements. The wireless, skin‐like bioelectronic system (SKINTRONICS) is utilized for quantitative diagnostics of cervical dystonia (CD), which is characterized by involuntary abnormal head postures and repetitive head movements, sometimes with neck muscle pain. A set of analytical and experimental studies shows a soft system packaging, hard–soft materials integration, and quantitative assessment of physiological signals detected by the SKINTRONICS. In vivo demonstration, involving 10 human subjects, finds the device feasible for use in CD measurement.

     
    more » « less
  4. Abstract

    Paper, an inexpensive material with natural biocompatibility, non‐toxicity, and biodegradability, allows for affordable and cost‐effective substrates for unconventional advanced electronics, often called papertronics. On the other hand, polymeric elastomers have shown to be an excellent success for substrates of soft bioelectronics, providing stretchability in skin wearable technology for continuous sensing applications. Although both materials hold their unique advantageous characteristics, merging both material properties into a single electronic substrate reimagines paper‐based bioelectronics for wearable and patchable applications in biosensing, energy generation and storage, soft actuators, and more. Here, a breathable, light‐weighted, biocompatible engineered stretchable paper is reported via coaxial nonwoven microfibers for unconventional bioelectronic substrates. The stretchable papers allow intimate bioconformability without adhesive through coaxial electrospinning of a cellulose acetate polymer (sheath) and a silicone elastomer (core). The fabricated cellulose‐silicone fibers exhibit a greater percent strain than commercially available paper while retaining hydrophilicity, biocompatibility, combustibility, disposable, and other natural characteristics of paper. Moreover, the nonwoven stretchable cellulose‐silicone fibrous mat can adapt conventional printing and fabrication process for paper‐based electronics, an essential aspect of advanced bioelectronic manufacturing.

     
    more » « less
  5. Abstract

    Integration of conductive electrodes with 3D tissue models can have great potential for applications in bioelectronics, drug screening, and implantable devices. As conventional electrodes cannot be easily integrated on 3D, polymeric, and biocompatible substrates, alternatives are highly desirable. Graphene offers significant advantages over conventional electrodes due to its mechanical flexibility and robustness, biocompatibility, and electrical properties. However, the transfer of chemical vapor deposition graphene onto millimeter scale 3D structures is challenging using conventional wet graphene transfer methods with a rigid poly (methyl methacrylate) (PMMA) supportive layer. Here, a biocompatible 3D graphene transfer method onto 3D printed structure using a soft poly ethylene glycol diacrylate (PEGDA) supportive layer to integrate the graphene layer with a 3D engineered ring of skeletal muscle tissue is reported. The use of softer PEGDA supportive layer, with a 105times lower Young's modulus compared to PMMA, results in conformal integration of the graphene with 3D printed pillars and allows electrical stimulation and actuation of the muscle ring with various applied voltages and frequencies. The graphene integration method can be applied to many 3D tissue models and be used as a platform for electrical interfaces to 3D biological tissue system.

     
    more » « less