skip to main content


Title: Integration of Graphene Electrodes with 3D Skeletal Muscle Tissue Models
Abstract

Integration of conductive electrodes with 3D tissue models can have great potential for applications in bioelectronics, drug screening, and implantable devices. As conventional electrodes cannot be easily integrated on 3D, polymeric, and biocompatible substrates, alternatives are highly desirable. Graphene offers significant advantages over conventional electrodes due to its mechanical flexibility and robustness, biocompatibility, and electrical properties. However, the transfer of chemical vapor deposition graphene onto millimeter scale 3D structures is challenging using conventional wet graphene transfer methods with a rigid poly (methyl methacrylate) (PMMA) supportive layer. Here, a biocompatible 3D graphene transfer method onto 3D printed structure using a soft poly ethylene glycol diacrylate (PEGDA) supportive layer to integrate the graphene layer with a 3D engineered ring of skeletal muscle tissue is reported. The use of softer PEGDA supportive layer, with a 105times lower Young's modulus compared to PMMA, results in conformal integration of the graphene with 3D printed pillars and allows electrical stimulation and actuation of the muscle ring with various applied voltages and frequencies. The graphene integration method can be applied to many 3D tissue models and be used as a platform for electrical interfaces to 3D biological tissue system.

 
more » « less
Award ID(s):
1720633 1735252
NSF-PAR ID:
10457887
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Healthcare Materials
Volume:
9
Issue:
4
ISSN:
2192-2640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Scaffold‐guided formation of neuronal‐like networks, especially under electrical stimulation, can be an appealing avenue toward functional restoration of injured nervous systems. Here, 3D conductive scaffolds are fabricated based on printed microfiber constructs using near‐field electrostatic printing (NFEP) and graphene oxide (GO) coating. Various microfiber patterns are obtained from poly(l‐lactic acid‐co‐caprolactone) (PLCL) using NFEP and complexity is achieved via modulating the fiber overlay angles (45°, 60°, 75°, 90°), fiber diameters (15 to 148 µm), and fiber spatial organization (spider web and tubular structure). Upon coating GO onto PLCL microfibers via a layer‐by‐layer (L‐b‐L) assembly technique and in situ reduction into reduced GO (rGO), the obtained conductive scaffolds, with 25–50 layers of rGO, demonstrate superior conductivity (≈0.95 S cm−1) and capability of inducing neuronal‐like network formation along the conductive microfibers under electrical stimulation (100–150 mV cm−1). Both electric field (0–150 mV cm−1) and microfiber diameter (17–150 µm) affect neurite outgrowth (PC‐12 cells and primary mouse hippocampal neurons) and the formation of orientated neuronal‐like networks. With further demonstration of such guidance to neuronal cells, these conductive scaffolds may see versatile applications in nerve regeneration and neural engineering.

     
    more » « less
  2. Abstract

    Objective.Retinal prosthetics offer partial restoration of sight to patients blinded by retinal degenerative diseases through electrical stimulation of the remaining neurons. Decreasing the pixel size enables increasing prosthetic visual acuity, as demonstrated in animal models of retinal degeneration. However, scaling down the size of planar pixels is limited by the reduced penetration depth of the electric field in tissue. We investigated 3-dimensional (3d) structures on top of photovoltaic arrays for enhanced penetration of the electric field, permitting higher resolution implants.Approach.3D COMSOL models of subretinal photovoltaic arrays were developed to accurately quantify the electrodynamics during stimulation and verified through comparison to flat photovoltaic arrays. Models were applied to optimize the design of 3D electrode structures (pillars and honeycombs). Return electrodes on honeycomb walls vertically align the electric field with bipolar cells for optimal stimulation. Pillars elevate the active electrode, thus improving proximity to target neurons. The optimized 3D structures were electroplated onto existing flat subretinal prostheses.Main results.Simulations demonstrate that despite exposed conductive sidewalls, charge mostly flows via high-capacitance sputtered iridium oxide films topping the 3D structures. The 24μm height of honeycomb structures was optimized for integration with the inner nuclear layer cells in the rat retina, whilst 35μm tall pillars were optimized for penetrating the debris layer in human patients. Implantation of released 3D arrays demonstrates mechanical robustness, with histology demonstrating successful integration of 3D structures with the rat retinain-vivo.Significance. Electroplated 3D honeycomb structures produce vertically oriented electric fields, providing low stimulation thresholds, high spatial resolution, and high contrast for pixel sizes down to 20μm. Pillar electrodes offer an alternative for extending past the debris layer. Electroplating of 3D structures is compatible with the fabrication process of flat photovoltaic arrays, enabling much more efficient retinal stimulation.

     
    more » « less
  3. Abstract

    A roll‐to‐roll (R2R) transfer technique is employed to improve the electrical properties of transferred graphene on flexible substrates using parylene as an interfacial layer. A layer of parylene is deposited on graphene/copper (Cu) foils grown by chemical vapor deposition and are laminated onto ethylene vinyl acetate (EVA)/poly(ethylene terephthalate). Then, the samples are delaminated from the Cu using an electrochemical transfer process, resulting in flexible and conductive substrates with sheet resistances of below 300 Ω sq−1, which is significantly better (fourfold) than the sample transferred by R2R without parylene (1200 Ω sq−1). The characterization results indicate that parylene C and D dope graphene due to the presence of chlorine atoms in their structure, resulting in higher carrier density and thus lower sheet resistance. Density functional theory calculations reveal that the binding energy between parylene and graphene is stronger than that of EVA and graphene, which may lead to less tear in graphene during the R2R transfer. Finally, organic solar cells are fabricated on the ultrathin and flexible parylene/graphene substrates and an ultra‐lightweight device is achieved with a power conversion efficiency of 5.86%. Additionally, the device shows a high power per weight of 6.46 W g−1with superior air stability.

     
    more » « less
  4. Abstract

    A key challenge in bioelectronics is to establish and improve the interface between electronic devices and living tissues, enabling a direct assessment of biological systems. Sensors integrated with plant tissue can provide valuable information about the plant itself as well as the surrounding environment, including air and soil quality. An obstacle in developing interfaces to plant tissue is mitigating the formation of fibrotic tissues, which can hinder continuous and accurate sensor operation over extended timeframes. Electronic systems that utilize suitable biocompatible materials alongside appropriate fabrication techniques to establish plant-electronic interfaces could provide for enhanced environmental understanding and ecosystem management capabilities. To meet these demands, this study introduces an approach for integrating printed electronic materials with biocompatible cryogels, resulting in stable implantable hydrogel-based bioelectronic devices capable of long-term operation within plant tissue. These inkjet-printed cryogels can be customized to provide various electronic functionalities, including electrodes and organic electrochemical transistors (OECTs), that exhibit high electrical conductivity for embedded conducting polymer traces (up to 350 S/cm), transconductance for OECTs in the mS range, a capacitance of up to 4.2 mF g−1in suitable structures, high stretchability (up to 330% strain), and self-healing properties. The biocompatible functionalized cryogel-based electrodes and transistors were successfully implanted in plant tissue, and ionic activity in tomato plant stems was collected for over two months with minimal scar tissue formation, making these cryogel-based printed electronic devices excellent candidates for continuous, in-situ monitoring of plant and environmental status and health.

     
    more » « less
  5. ABSTRACT In today’s technology, organ transplantation is found very challenging as it is not easy to find the right donor organ in a short period of time. In the last several decades, tissue engineering was rapidly developed to be used as an alternative approach to the organ transplantation. Tissue engineering aims to regenerate the tissues and also organs to help patients who waits for the organ transplantation. Recent research showed that in order to regenerate the tissues, cells must be seeded onto the 3D artificial laboratory fabricated matrices called scaffolds. If cells show healthy growth within the scaffolds, they can be implanted to the injured tissue to do the regeneration. One of the biggest limitation that reduces the success rate of tissue regeneration is the fabrication of accurate thick 3D scaffolds. In this research “maskless photolithography” was used to fabricate the scaffolds. Experiment setup consist of digital micro-mirror devices (DMD) (Texas Instruments, DLi4120), optical lens sets, UV light source (DYMAX, BlueWave 200) and PEGDA which is a liquid form photo-curable solution. In this method, scaffolds are fabricated in layer-by-layer fashion to control the interior architecture of the scaffolds. Working principles of the maskless photolithography is, first layer shape is designed with AutoCAD and the designed image is uploaded to the DMD as a bitmap file. DMD consists of hundreds of tiny micro-mirrors. When the UV light is turned on and irradiated the DMD, depending on the micro-mirrors’ angles, UV light is selectively reflected to the low percentage Polyethylene (glycol) Diacrylate (PEGDA) photo-curable solution. When UV light penetrates into the PEGDA, only the illuminated part is solidified and non-illuminated area still remains in the liquid phase. In this research, scaffolds were fabricated in three layers. First layer and the last layer are solid layers and y-shape open structure was sandwiched between these layers. After the first layer is fabricated with DMD, a “y-shape” structure was fabricated with the 3D printer by using the dissolvable filament. Then, it was placed onto the first solid layer and covered with fresh high percentage PEGDA solution. UV light was reflected to the PEGDA solution and solidified to make the second and third layers. After the scaffold was fabricated, it is dipped into the limonene solution to dissolve the y-shape away. Our results show that thick scaffolds can be fabricated in layer-by-layer fashion with “maskless photolithography”. Since the UV light is stable and does not move onto the PEGDA, entire scaffold can be fabricated in one single UV shot which makes the process faster than the current fabrication techniques. 
    more » « less