skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supergravity with mimetic dark matter
Abstract We formulate a supersymmetric version of gravity with mimetic dark matter. The coupling of a constrained chiral multiplet to $$N = 1$$ N = 1 supergravity is made locally supersymmetric using the rules of tensor calculus. The chiral multiplet is constrained with a Lagrange multiplier multiplet that could be either a chiral multiplet or a linear multiplet. We obtain the fully supersymmetric Lagrangians in both cases. It is then shown that the system consisting of the supergravity multiplet, the chiral multiplet and the Lagrange multiplier multiplet can break supersymmetry spontaneously leading to a model of a graviton, massive gravitino and two scalar fields representing mimetic dark matter. The combination of the chiral multiplet and Lagrange multiplier multiplet can act as the hidden sector breaking local $$N = 1$$ N = 1 supersymmetry.  more » « less
Award ID(s):
1912998
PAR ID:
10381279
Author(s) / Creator(s):
Date Published:
Journal Name:
The European Physical Journal C
Volume:
81
Issue:
11
ISSN:
1434-6044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract We study two-dimensional celestial conformal field theory describing four- dimensional $$ \mathcal{N} $$ N =1 supergravity/Yang-Mills systems and show that the underlying symmetry is a supersymmetric generalization of BMS symmetry. We construct fermionic conformal primary wave functions and show how they are related via supersymmetry to their bosonic partners. We use soft and collinear theorems of supersymmetric Einstein-Yang- Mills theory to derive the OPEs of the operators associated to massless particles. The bosonic and fermionic soft theorems are shown to form a sequence under supersymmetric Ward identities. In analogy with the energy momentum tensor, the supercurrents are shadow transforms of soft gravitino operators and generate an infinite-dimensional super- symmetry algebra. The algebra of $$ {\mathfrak{sbms}}_4 $$ sbms 4 generators agrees with the expectations based on earlier work on the asymptotic symmetry group of supergravity. We also show that the supertranslation operator can be written as a product of holomorphic and anti-holomorphic supercurrents. 
    more » « less
  2. A bstract The vanishing of the Higgs quartic coupling at a high energy scale may be explained by Intermediate Scale Supersymmetry, where supersymmetry breaks at (10 9 -10 12 ) GeV. The possible range of supersymmetry breaking scales can be narrowed down by precise measurements of the top quark mass and the strong coupling constant. On the other hand, nuclear recoil experiments can probe Higgsino or sneutrino dark matter up to a mass of 10 12 GeV. We derive the correlation between the dark matter mass and precision measurements of standard model parameters, including supersymmetric threshold corrections. The dark matter mass is bounded from above as a function of the top quark mass and the strong coupling constant. The top quark mass and the strong coupling constant are bounded from above and below respectively for a given dark matter mass. We also discuss how the observed dark matter abundance can be explained by freeze-out or freeze-in during a matter-dominated era after inflation, with the inflaton condensate being dissipated by thermal effects. 
    more » « less
  3. A<sc>bstract</sc> We show that near the edges of the conformal window of supersymmetric SU(Nc) QCD, perturbed by Anomaly Mediated Supersymmetry Breaking (AMSB), chiral symmetry can be broken depending on the initial conditions of the RG flow. We do so by perturbatively expanding around Banks-Zaks fixed points and taking advantage of Seiberg duality. Interpolating between the edges of the conformal window, we predict that non-supersymmetric QCD breaks chiral symmetry up toNf≤ 3Nc− 1, while we cannot say anything definitive forNf≥ 3Ncat this moment. 
    more » « less
  4. A<sc>bstract</sc> A model of supergravity inflation we recently proposed can produce slow roll inflation and a realistic spectrum of particles even without F-term supersymmetry breaking. Supersymmetry is broken only by a D-term induced by a recently discovered new type of Fayet-Iliopoulos (FI) term. Almost all supersymmetric partners of the standard model fields can get masses as high as the inflationary Hubble scale. The exception is gauginos, for which the vanishing of F-terms implies an exact cancellation that keeps their masses exactly zero. To cure this problem without spoiling the simplicity of our model we introduce a new term that further enlarges the space of supergravity effective actions. It is an F-term that, similarly to the new FI term, becomes singular in the supersymmetric limit. We show that this term can produce large gaugino masses without altering the spectrum of other states and without lowering the cutoff of the effecive theory. 
    more » « less
  5. A bstract We investigate the underlying quantum group symmetry of 2d Liouville and dilaton gravity models, both consolidating known results and extending them to the cases with $$ \mathcal{N} $$ N = 1 supersymmetry. We first calculate the mixed parabolic representation matrix element (or Whittaker function) of U q ( $$ \mathfrak{sl} $$ sl (2 , ℝ)) and review its applications to Liouville gravity. We then derive the corresponding matrix element for U q ( $$ \mathfrak{osp} $$ osp (1 | 2 , ℝ)) and apply it to explain structural features of $$ \mathcal{N} $$ N = 1 Liouville supergravity. We show that this matrix element has the following properties: (1) its q → 1 limit is the classical OSp + (1 | 2 , ℝ) Whittaker function, (2) it yields the Plancherel measure as the density of black hole states in $$ \mathcal{N} $$ N = 1 Liouville supergravity, and (3) it leads to 3 j -symbols that match with the coupling of boundary vertex operators to the gravitational states as appropriate for $$ \mathcal{N} $$ N = 1 Liouville supergravity. This object should likewise be of interest in the context of integrability of supersymmetric relativistic Toda chains. We furthermore relate Liouville (super)gravity to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that the quantization of the target space Poisson structure in the (graded) Poisson sigma model description leads directly to the quantum group U q ( $$ \mathfrak{sl} $$ sl (2 , ℝ)) or the quantum supergroup U q ( $$ \mathfrak{osp} $$ osp (1 | 2 , ℝ)). 
    more » « less