skip to main content

Title: Discrete gravity
A bstract We assume that the points in volumes smaller than an elementary volume (which may have a Planck size) are indistinguishable in any physical experiment. This naturally leads to a picture of a discrete space with a finite number of degrees of freedom per elementary volume. In such discrete spaces, each elementary cell is completely characterized by displacement operators connecting a cell to the neighboring cells and by the spin connection. We define the torsion and curvature of the discrete spaces and show that in the limiting case of vanishing elementary volume the standard results for the continuous curved differentiable manifolds are completely reproduced.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of High Energy Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the volume growth of metric balls as a function of the radius in discrete spaces and focus on the relationship between volume growth and discrete curvature. We improve volume growth bounds under a lower bound on the so-called Ollivier curvature and discuss similar results under other types of discrete Ricci curvature.

    Following recent work in the continuous setting of Riemannian manifolds (by the 1st author), we then bound the eigenvalues of the Laplacian of a graph under bounds on the volume growth. In particular, $\lambda _2$ of the graph can be bounded using a weighted discrete Hardy inequality and the higher eigenvalues of the graph can be bounded by the eigenvalues of a tridiagonal matrix times a multiplicative factor, both of which only depend on the volume growth of the graph. As a direct application, we relate the eigenvalues to the Cheeger isoperimetric constant. Using these methods, we describe classes of graphs for which the Cheeger inequality is tight on the 2nd eigenvalue (i.e. the 1st nonzero eigenvalue). We also describe a method for proving Buser’s Inequality in graphs, particularly under a lower bound assumption on curvature.

    more » « less
  2. De Lorenzis, L ; Papadrakakis, M ; Zohdi T.I. (Ed.)
    This paper introduces a neural kernel method to generate machine learning plasticity models for micropolar and micromorphic materials that lack material symmetry and have internal structures. Since these complex materials often require higher-dimensional parametric space to be precisely characterized, we introduce a representation learning step where we first learn a feature vector space isomorphic to a finite-dimensional subspace of the original parametric function space from the augmented labeled data expanded from the narrow band of the yield data. This approach simplifies the data augmentation step and enables us to constitute the high-dimensional yield surface in a feature space spanned by the feature kernels. In the numerical examples, we first verified the implementations with data generated from known models, then tested the capacity of the models to discover feature spaces from meso-scale simulation data generated from representative elementary volume (RVE) of heterogeneous materials with internal structures. The neural kernel plasticity model and other alternative machine learning approaches are compared in a computational homogenization problem for layered geomaterials. The results indicate that the neural kernel feature space may lead to more robust forward predictions against sparse and high-dimensional data. 
    more » « less
  3. Abstract

    We present a formulation and numerical algorithm to extend the scheme for gray radiation magnetohydrodynamics (MHD) developed by Jiang to include the frequency dependence via the multigroup approach. The entire frequency space can be divided into an arbitrary number of groups in the lab frame, and we follow the time-dependent evolution of frequency-integrated specific intensities along discrete rays inside each group. Spatial transport of photons is done in the lab frame while all the coupling terms are solved in the fluid rest frame. Lorentz transformation is used to connect different frames. The radiation transport equation is solved fully implicitly in time while the MHD equations are evolved explicitly so that time step is not limited by the speed of light. A finite volume approach is used for transport in both spatial and frequency spaces to conserve the radiation energy density and momentum. The algorithm includes photon absorption, electron scattering, as well as Compton scattering, which is calculated by solving the Kompaneets equation. The algorithm is accurate for a wide range of optical depth conditions and can handle both radiation-pressure- and gas-pressure-dominated flows. It works for both Cartesian and curvilinear coordinate systems with adaptive mesh refinement. We provide a variety of test problems including a radiating sphere, shadow test, absorption of a moving gas, Bondi-type flows, as well as a collection of test problems for thermal and bulk Compton scattering. We also discuss examples where frequency dependence can make a big difference compared with the gray approach.

    more » « less
  4. null (Ed.)
    Optimal transport began as the problem of how to efficiently redistribute goods between production and consumers and evolved into a far-reaching geometric variational framework for studying flows of distributions on metric spaces. This theory enables a class of stochastic control problems to regulate dynamical systems so as to limit uncertainty to within specified limits. Representative control examples include the landing of a spacecraft aimed probabilistically toward a target and the suppression of undesirable effects of thermal noise on resonators; in both of these examples, the goal is to regulate the flow of the distribution of the random state. A most unlikely link turned up between transport of probability distributions and a maximum entropy inference problem posed by Erwin Schrödinger, where the latter is seen as an entropy-regularized version of the former. These intertwined topics of optimal transport, stochastic control, and inference are the subject of this review, which aims to highlight connections, insights, and computational tools while touching on quadratic regulator theory and probabilistic flows in discrete spaces and networks. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 2021. Please see for revised estimates. 
    more » « less
  5. Finley, Stacey (Ed.)
    Since the seminal 1961 paper of Monod and Jacob, mathematical models of biomolecular circuits have guided our understanding of cell regulation. Model-based exploration of the functional capabilities of any given circuit requires systematic mapping of multidimensional spaces of model parameters. Despite significant advances in computational dynamical systems approaches, this analysis remains a nontrivial task. Here, we use a nonlinear system of ordinary differential equations to model oocyte selection in Drosophila , a robust symmetry-breaking event that relies on autoregulatory localization of oocyte-specification factors. By applying an algorithmic approach that implements symbolic computation and topological methods, we enumerate all phase portraits of stable steady states in the limit when nonlinear regulatory interactions become discrete switches. Leveraging this initial exact partitioning and further using numerical exploration, we locate parameter regions that are dense in purely asymmetric steady states when the nonlinearities are not infinitely sharp, enabling systematic identification of parameter regions that correspond to robust oocyte selection. This framework can be generalized to map the full parameter spaces in a broad class of models involving biological switches. 
    more » « less