skip to main content


Title: Submillimetre galaxies in two massive protoclusters at z  = 2.24: witnessing the enrichment of extreme starbursts in the outskirts of HAE density peaks
ABSTRACT Submillimetre galaxies represent a rapid growth phase of both star formation and massive galaxies. Mapping SMGs in galaxy protoclusters provides key insights into where and how these extreme starbursts take place in connections with the assembly of the large-scale structure in the early Universe. We search for SMGs at 850 $\rm{\mu m}$ using JCMT/SCUBA-2 in two massive protoclusters at z = 2.24, BOSS1244 and BOSS1542, and detect 43 and 54 sources with S850 > 4 mJy at the 4σ level within an effective area of 264 arcmin2, respectively. We construct the intrinsic number counts and find that the abundance of SMGs is 2.0 ± 0.3 and 2.1 ± 0.2 times that of the general fields, confirming that BOSS1244 and BOSS1542 contain a higher fraction of dusty galaxies with strongly enhanced star formation. The volume densities of the SMGs are estimated to be ∼15–30 times the average, significantly higher than the overdensity factor (∼6) traced by H α emission-line galaxies (HAEs). More importantly, we discover a prominent offset between the spatial distributions of the two populations in these two protoclusters – SMGs are mostly located around the high-density regions of HAEs, and few are seen inside these regions. This finding may have revealed for the first time the occurrence of violent star formation enhancement in the outskirts of the HAE density peaks, likely driven by the boosting of gas supplies and/or starburst triggering events. Meanwhile, the lack of SMGs inside the most overdense regions at z ∼ 2 implies a transition to the environment disfavouring extreme starbursts.  more » « less
Award ID(s):
1908284
NSF-PAR ID:
10381311
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
512
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
4893 to 4908
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Simulations predict that the galaxy populations inhabiting protoclusters may contribute considerably to the total amount of stellar mass growth of galaxies in the early universe. In this study, we test these predictions observationally, using the Taralay protocluster (formerly PCl J1001+0220) at z ∼ 4.57 in the COSMOS field. With the Charting Cluster Construction with VUDS and ORELSE (C3VO) survey, we spectroscopically confirmed 44 galaxies within the adopted redshift range of the protocluster (4.48 < z < 4.64) and incorporate an additional 18 galaxies from ancillary spectroscopic surveys. Using a density mapping technique, we estimate the total mass of Taralay to be ∼1.7 × 1015 M⊙, sufficient to form a massive cluster by the present day. By comparing the star formation rate density (SFRD) within the protocluster (SFRDpc) to that of the coeval field (SFRDfield), we find that SFRDpc surpasses the SFRDfield by Δlog (SFRD/M⊙yr−1 Mpc−3) = 1.08 ± 0.32 (or ∼12 ×). The observed contribution fraction of protoclusters to the cosmic SFRD adopting Taralay as a proxy for typical protoclusters is $33.5~{{\ \rm per\ cent}}^{+8.0~{{\ \rm per\ cent}}}_{-4.3~{{\ \rm per\ cent}}}$, a value ∼2σ higher than the predictions from simulations. Taralay contains three peaks that are 5σ above the average density at these redshifts. Their SFRD is ∼0.5 dex higher than the value derived for the overall protocluster. We show that 68 per cent of all star formation in the protocluster takes place within these peaks, and that the innermost regions of the peaks encase $\sim 50~{{\ \rm per\ cent}}$ of the total star formation in the protocluster. This study strongly suggests that protoclusters drive stellar mass growth in the early universe and that this growth may proceed in an inside-out manner.

     
    more » « less
  2. We studied the molecular gas properties of AzTEC/C159, a star-forming disk galaxy at $z=4.567$. We secured $^{12}$CO molecular line detections for the $J=2\to1$ and $J=5\to4$ transitions using the Karl G. Jansky VLA and the NOEMA interferometer. The broad (FWHM$\sim750\,{\rm km\,s}^{-1}$) and tentative double-peaked profiles of both $^{12}$CO lines are consistent with an extended molecular gas reservoir, which is distributed in a rotating disk as previously revealed from [CII] 158$\mu$m line observations. Based on the $^{12}$CO(2$\to$1) emission line we derived $L'_{\rm{CO}}=(3.4\pm0.6)\times10^{10}{\rm \,K\,km\,s}^{-1}{\rm \,pc}^{2}$, that yields a molecular gas mass of $M_{\rm H_2 }(\alpha_{\rm CO}/4.3)=(1.5\pm0.3)\times 10^{11}{\rm M}_\odot$ and unveils a gas-rich system with $\mu_{\rm gas}(\alpha_{\rm CO}/4.3)\equiv M_{\rm H_2}/M_\star=3.3\pm0.7$. The extreme star formation efficiency (SFE) of AzTEC/C159, parametrized by the ratio $L_{\rm{IR}}/L'_{\rm{CO}}=(216\pm80)\, {\rm L}_{\odot}{\rm \,(K\,km\,s}^{-1}{\rm \,pc}^{2})^{-1}$, is comparable to merger-driven starbursts such as local ultra-luminous infrared galaxies (ULIRGs) and SMGs. Likewise, the $^{12}$CO(5$\to$4)/CO(2$\to$1) line brightness temperature ratio of $r_{52}= 0.55\pm 0.15$ is consistent with high excitation conditions, similar to that observed in SMGs. We constrained the value for the $L'_{\text{CO}}-{\rm H}_2$ mass conversion factor in AzTEC/C159, i.e. $\alpha_{\text{CO}}=3.9^{+2.7}_{-1.3}{\rm \,M}_{\odot}{\rm \,K}^{-1}{\rm \,km}^{-1}{\rm \,s\,pc}^{-2}$, that is consistent with a self-gravitating molecular gas distribution as observed in local star-forming disk galaxies. Cold gas streams from cosmological filaments might be fueling a gravitationally unstable gas-rich disk in AzTEC/C159, which breaks into giant clumps forming stars as efficiently as in merger-driven systems and generate high gas excitation. 
    more » « less
  3. ABSTRACT

    Characterizing the structural properties of galaxies in high-redshift protoclusters is key to our understanding of the environmental effects on galaxy evolution in the early stages of galaxy and structure formation. In this study, we assess the structural properties of 85 and 87 Hα emission-line candidates (HAEs) in the densest regions of two massive protoclusters, BOSS1244 and BOSS1542, respectively, using the Hubble Space Telescope (HST) H-band imaging data. Our results show a true pair fraction of 22 ± 5 (33 ± 6) per cent in BOSS1244 (BOSS1542), which yields a merger rate of 0.41 ± 0.09 (0.52 ± 0.04) Gyr−1 for massive HAEs with log (M*/M⊙) ≥ 10.3. This rate is 1.8 (2.8) times higher than that of the general fields at the same epoch. Our sample of HAEs exhibits half-light radii and Sérsic indices that cover a broader range than field star-forming galaxies. Additionally, about 15 per cent of the HAEs are as compact as the most massive (log (M*/M⊙) ≳ 11) spheroid-dominated population. These results suggest that the high galaxy density and cold dynamical state (i.e. velocity dispersion of <400 km s−1) are key factors that drive galaxy mergers and promote structural evolution in the two protoclusters. Our findings also indicate that both the local environment (on group scales) and the global environment play essential roles in shaping galaxy morphologies in protoclusters. This is evident in the systematic differences observed in the structural properties of galaxies between BOSS1244 and BOSS1542.

     
    more » « less
  4. Abstract We report the first spatially resolved measurements of gas-phase metallicity radial gradients in star-forming galaxies in overdense environments at z ≳ 2. The spectroscopic data are acquired by the MAMMOTH-Grism survey, a Hubble Space Telescope (HST) cycle 28 medium program. This program is obtaining 45 orbits of WFC3/IR grism spectroscopy in the density peak regions of three massive galaxy protoclusters (BOSS 1244, BOSS 1542, and BOSS 1441) at z = 2–3. Our sample in the BOSS 1244 field consists of 20 galaxies with stellar mass ranging from 10 9.0 to 10 10.3 M ⊙ , star formation rate (SFR) from 10 to 240 M ⊙ yr −1 , and global gas-phase metallicity ( 12 + log ( O / H ) ) from 8.2 to 8.6. At 1 σ confidence level, 2/20 galaxies in our sample show positive (inverted) gradients—the relative abundance of oxygen increasing with galactocentric radius, opposite the usual trend. Furthermore, 1/20 shows negative gradients, and 17/20 are consistent with flat gradients. This high fraction of flat/inverted gradients is uncommon in simulations and previous observations conducted in blank fields at similar redshifts. To understand this, we investigate the correlations among various observed properties of our sample galaxies. We find an anticorrelation between metallicity gradient and global metallicity of our galaxies residing in extreme overdensities, and a marked deficiency of metallicity in our massive galaxies as compared to their coeval field counterparts. We conclude that the cold-mode gas accretion plays an active role in shaping the chemical evolution of galaxies in the protocluster environments, diluting their central chemical abundance, and flattening/inverting their metallicity gradients. 
    more » « less
  5. ABSTRACT

    We present SCUBA-2 850 $\mathrm{ \mu}$m observations of 13 candidate starbursting protoclusters selected using Planck and Herschel data. The cumulative number counts of the 850 $\mathrm{ \mu}$m sources in 9 of 13 of these candidate protoclusters show significant overdensities compared to the field, with the probability <10−2 assuming the sources are randomly distributed in the sky. Using the 250, 350, 500, and 850 $\mathrm{ \mu}$m flux densities, we estimate the photometric redshifts of individual SCUBA-2 sources by fitting spectral energy distribution templates with an MCMC method. The photometric redshift distribution, peaking at 2 < z < 3, is consistent with that of known z > 2 protoclusters and the peak of the cosmic star formation rate density (SFRD). We find that the 850 $\mathrm{ \mu}$m sources in our candidate protoclusters have infrared luminosities of $L_{\mathrm{IR}}\gtrsim 10^{12}\, \mathrm{L}_{\odot }$ and star formation rates of SFR  = (500–1500) M⊙ yr−1. By comparing with results in the literature considering only Herschel photometry, we conclude that our 13 candidate protoclusters can be categorized into four groups: six of them being high-redshift starbursting protoclusters, one being a lower redshift cluster or protocluster, three being protoclusters that contain lensed dusty star-forming galaxies or are rich in 850 $\mathrm{ \mu}$m sources, and three regions without significant Herschel or SCUBA-2 source overdensities. The total SFRs of the candidate protoclusters are found to be comparable or higher than those of known protoclusters, suggesting our sample contains some of the most extreme protocluster population. We infer that cross-matching Planck and Herschel data is a robust method for selecting candidate protoclusters with overdensities of 850 $\mathrm{ \mu}$m sources.

     
    more » « less