Abstract The radial gradient of gas-phase metallicity is a powerful probe of the chemical and structural evolution of star-forming galaxies, closely tied to disk formation and gas kinematics in the early Universe. We present spatially resolved chemical and dynamical properties for a sample of 25 galaxies at 0.5 ≲ z ≲ 1.7 from theMSA-3Dsurvey. These innovative observations provide 3D spectroscopy of galaxies at a spatial resolution approaching JWST’s diffraction limit and a high spectral resolution ofR ≃ 2700. The metallicity gradients measured in our galaxy sample range from −0.03 to 0.02 dex kpc−1. Most galaxies exhibit negative or flat radial gradients, indicating lower metallicity in the outskirts or uniform metallicity throughout the entire galaxy. We confirm a tight relationship between stellar mass and metallicity gradient atz ∼ 1 with small intrinsic scatter of 0.02 dex kpc−1. Our results indicate that metallicity gradients become increasingly negative as stellar mass increases, likely because the more massive galaxies tend to be more “disky.” This relationship is consistent with the predictions from cosmological hydrodynamic zoom-in simulations with strong stellar feedback. This work presents the effort to harness the multiplexing capability of the JWST NIRSpec microshutter assembly in slit-stepping mode to map the chemical and kinematic profiles of high-redshift galaxies in large samples and at high spatial and spectral resolution.
more »
« less
First Census of Gas-phase Metallicity Gradients of Star-forming Galaxies in Overdense Environments at Cosmic Noon
Abstract We report the first spatially resolved measurements of gas-phase metallicity radial gradients in star-forming galaxies in overdense environments at z ≳ 2. The spectroscopic data are acquired by the MAMMOTH-Grism survey, a Hubble Space Telescope (HST) cycle 28 medium program. This program is obtaining 45 orbits of WFC3/IR grism spectroscopy in the density peak regions of three massive galaxy protoclusters (BOSS 1244, BOSS 1542, and BOSS 1441) at z = 2–3. Our sample in the BOSS 1244 field consists of 20 galaxies with stellar mass ranging from 10 9.0 to 10 10.3 M ⊙ , star formation rate (SFR) from 10 to 240 M ⊙ yr −1 , and global gas-phase metallicity ( 12 + log ( O / H ) ) from 8.2 to 8.6. At 1 σ confidence level, 2/20 galaxies in our sample show positive (inverted) gradients—the relative abundance of oxygen increasing with galactocentric radius, opposite the usual trend. Furthermore, 1/20 shows negative gradients, and 17/20 are consistent with flat gradients. This high fraction of flat/inverted gradients is uncommon in simulations and previous observations conducted in blank fields at similar redshifts. To understand this, we investigate the correlations among various observed properties of our sample galaxies. We find an anticorrelation between metallicity gradient and global metallicity of our galaxies residing in extreme overdensities, and a marked deficiency of metallicity in our massive galaxies as compared to their coeval field counterparts. We conclude that the cold-mode gas accretion plays an active role in shaping the chemical evolution of galaxies in the protocluster environments, diluting their central chemical abundance, and flattening/inverting their metallicity gradients.
more »
« less
- Award ID(s):
- 1908284
- PAR ID:
- 10381315
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 929
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Using the FIRE-2 cosmological zoom-in simulations, we investigate the temporal evolution of gas-phase metallicity radial gradients of Milky Way–mass progenitors in the redshift range of 0.4 <z< 3. We pay special attention to the occurrence of positive (i.e., inverted) metallicity gradients—where metallicity increases with galactocentric radius. This trend, contrary to the more commonly observed negative radial gradients, has been frequently seen in recent spatially resolved grism observations. The rate of occurrence of positive gradients in FIRE-2 is about ∼7% for 0.4 <z< 3 and ∼13% at higher redshifts (1.5 <z< 3), broadly consistent with observations. Moreover, we investigate the correlations among galaxy metallicity gradient, stellar mass, star formation rate (SFR), and degree of rotational support. Metallicity gradients show a strong correlation with both sSFR and the rotational-to-dispersion velocity ratio (vc/σ), implying that starbursts and kinematic morphology of galaxies play significant roles in shaping these gradients. The FIRE-2 simulations indicate that galaxies with high sSFR ( ) and weak rotational support (vc/σ≲ 1) are more likely—by ∼15%—to develop positive metallicity gradients. This trend is attributed to galaxy-scale gas flows driven by stellar feedback, which effectively redistribute metals within the interstellar medium. Our results support the important role of stellar feedback in governing the chemo-structural evolution and disk formation of Milky Way–mass galaxies at the cosmic noon epoch.more » « less
-
Abstract We report on the gas-phase metallicity gradients of a sample of 238 star-forming galaxies at 0.6 < z < 2.6, measured through deep near-infrared Hubble Space Telescope slitless spectroscopy. The observations include 12 orbit depth Hubble/WFC3 G102 grism spectra taken as a part of the CANDELS Ly α Emission at Reionization (CLEAR) survey, and archival WFC3 G102+G141 grism spectra overlapping the CLEAR footprint. The majority of galaxies in this sample are consistent with having a zero or slightly positive metallicity gradient ( dZ / dR ≥ 0, i.e., increasing with radius) across the full mass range probed (8.5 < log M * / M ⊙ < 10.5). We measure the intrinsic population scatter of the metallicity gradients, and show that it increases with decreasing stellar mass—consistent with previous reports in the literature, but confirmed here with a much larger sample. To understand the physical mechanisms governing this scatter, we search for correlations between the observed gradient and various stellar population properties at fixed mass. However, we find no evidence for a correlation with the galaxy properties we consider—including star formation rates, sizes, star formation rate surface densities, and star formation rates per gravitational potential energy. We use the observed weakness of these correlations to provide material constraints for predicted intrinsic correlations from theoretical models.more » « less
-
Aims. We aim to quantify the relation between the dust-to-gas mass ratio (DTG) and gas-phase metallicity of z = 2.1 − 2.5 luminous galaxies and contrast this high-redshift relation against analogous constraints at z = 0. Methods. We present a sample of ten star-forming main-sequence galaxies in the redshift range 2.1 < z < 2.5 with rest-optical emission-line information available from the MOSDEF survey and with ALMA 1.2 millimetre and CO J = 3 − 2 follow-up observations. The galaxies have stellar masses ranging from 10 10.3 to 10 10.6 M ⊙ and cover a range in star-formation rate from 35 to 145 M ⊙ yr −1 . We calculated the gas-phase oxygen abundance of these galaxies from rest-optical nebular emission lines (8.4 < 12 + log(O/H) < 8.8, corresponding to 0.5−1.25 Z ⊙ ). We estimated the dust and H 2 masses of the galaxies (using a metallicity-dependent CO-to-H 2 conversion factor) from the 1.2 mm and CO J = 3 − 2 observations, respectively, from which we estimated a DTG. Results. We find that the galaxies in this sample follow the trends already observed between CO line luminosity and dust-continuum luminosity from z = 0 to z = 3, extending such trends to fainter galaxies at 2.1 < z < 2.5 than observed to date. We find no second-order metallicity dependence in the CO – dust-continuum luminosity relation for the galaxies presented in this work. The DTGs of main-sequence galaxies at 2.1 < z < 2.5 are consistent with an increase in the DTG with gas-phase metallicity. The metallicity dependence of the DTG is driven by the metallicity dependence of the CO-to-H 2 conversion factor. Galaxies at z = 2.1 − 2.5 are furthermore consistent with the DTG-metallicity relation found at z = 0 (i.e. with no significant evolution), providing relevant constraints for galaxy formation models. These results furthermore imply that the metallicity of galaxies should be taken into account when estimating cold-gas masses from dust-continuum emission, which is especially relevant when studying metal-poor low-mass or high-redshift galaxies.more » « less
-
We present spatially-resolved rest-frame optical emission line maps of four galaxies at z∼2 observed with Keck/OSIRIS to study the physical conditions of the ISM at Cosmic Noon. Our analysis of strong emission line ratios in these galaxies reveals an offset from the local star-forming locus on the BPT diagram, but agrees with other star-forming galaxies at similar redshifts. Despite the offset towards higher [O III]λ5008/Hβ and [N II]λ6585/Hα, these strong-line ratios remain consistent with or below the maximum starburst threshold even in the inner ∼1 kpc region of the galaxies, providing no compelling evidence for central AGN activity. The galaxies also exhibit flat radial gas-phase metallicity gradients, consistent with previous studies of z∼2 galaxies and suggesting efficient radial mixing possibly driven by strong outflows from intense star formation. Overall, our results reveal the highly star-forming nature of these galaxies, with the potential to launch outflows that flatten metallicity gradients through significant radial gas mixing. Future observations with JWST/NIRSpec are crucial to detect fainter emission lines at higher spatial resolution to further constrain the physical processes and ionization mechanisms that shape the ISM during Cosmic Noon.more » « less
An official website of the United States government

