Abstract We report new observations toward the hyperluminous dusty starbursting major merger ADFS-27 ( z = 5.655), using the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). We detect CO ( J = 2 → 1), CO ( J = 8 → 7), CO ( J = 9 → 8), CO ( J = 10 → 9), and H 2 O (3 12 → 2 21 ) emission, and a P Cygni−shaped OH + (1 1 → 0 1 ) absorption/emission feature. We also tentatively detect H 2 O (3 21 → 3 12 ) and OH + (1 2 → 0 1 ) emission and CH + ( J = 1 → 0) absorption. We find a total cold molecular mass of M gas = (2.1 ± 0.2) × 10 11 ( α CO /1.0) M ⊙ . We also find that the excitation of the star-forming gas is overall moderate for a z > 5 dusty starburst, which is consistent with its moderate dust temperature. A high-density, high kinetic temperature gas component embedded in the gas reservoir is required to fully explain the CO line ladder. This component is likely associated with the “maximum starburst” nuclei in the two merging galaxies, which are separated by only 140 ± 13 km s −1 along the line of sight and 9.0 kpc in projection. The kinematic structure of both components is consistent with galaxy disks, but this interpretation remains limited by the spatial resolution of the current data. The OH + features are only detected toward the northern component, which is also the one that is more enshrouded in dust and thus remains undetected up to 1.6 μ m even in our sensitive new Hubble Space Telescope Wide Field Camera 3 imaging. The absorption component of the OH + line is blueshifted and peaks near the CO and continuum emission peak, while the emission is redshifted and peaks offset by 1.7 kpc from the CO and continuum emission peak, suggesting that the gas is associated with a massive molecular outflow from the intensely star-forming nucleus that supplies 125 M ⊙ yr −1 of enriched gas to its halo.
more »
« less
Discovery of a Protocluster Core Associated with an Enormous Lya Nebula at z = 2.3
Abstract The MAMMOTH-1 nebula at z = 2.317 is an enormous Ly α nebula (ELAN) extending to a ∼440 kpc scale at the center of the extreme galaxy overdensity BOSS 1441. In this paper, we present observations of the CO(3 − 2) and 250 GHz dust-continuum emission from MAMMOTH-1 using the IRAM NOrthern Extended Millimeter Array. Our observations show that CO(3 − 2) emission in this ELAN has not extended widespread emission into the circum- and inter-galactic media. We also find a remarkable concentration of six massive galaxies in CO(3 − 2) emission in the central ∼100 kpc region of the ELAN. Their velocity dispersions suggest a total halo mass of M 200 c ∼ 10 13.1 M ⊙ , marking a possible protocluster core associated with the ELAN. The peak position of the CO(3 − 2) line emission from the obscured AGN is consistent with the location of the intensity peak of MAMMOTH-1 in the rest-frame UV band. Its luminosity line ratio between the CO(3 − 2) and CO(1 − 0) r 3,1 is 0.61 ± 0.17. The other five galaxies have CO(3 − 2) luminosities in the range of (2.1–7.1) × 10 9 K km s −1 pc 2 , with the star-formation rates derived from the 250 GHz continuum of (<36)–224 M ⊙ yr −1 . Follow-up spectroscopic observations will further confirm more member galaxies and improve the accuracy of the halo mass estimation.
more »
« less
- Award ID(s):
- 1908284
- PAR ID:
- 10381325
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 922
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the molecular gas content of z ∼ 6 quasar host galaxies using the Institut de Radioastronomie Millimétrique Northern Extended Millimeter Array. We targeted the 3 mm dust continuum, and the line emission from CO(6–5), CO(7–6), and [C I ] 2−1 in ten infrared–luminous quasars that have been previously studied in their 1 mm dust continuum and [C II ] line emission. We detected CO(7–6) at various degrees of significance in all the targeted sources, thus doubling the number of such detections in z ∼ 6 quasars. The 3 mm to 1 mm flux density ratios are consistent with a modified black body spectrum with a dust temperature T dust ∼ 47 K and an optical depth τ ν = 0.2 at the [C II ] frequency. Our study provides us with four independent ways to estimate the molecular gas mass, M H2 , in the targeted quasars. This allows us to set constraints on various parameters used in the derivation of molecular gas mass estimates, such as the mass per luminosity ratios α CO and α [CII] , the gas-to-dust mass ratio δ g/d , and the carbon abundance [C]/H 2 . Leveraging either on the dust, CO, [C I ], or [C II ] emission yields mass estimates of the entire sample in the range M H2 ∼ 10 10 –10 11 M ⊙ . We compared the observed luminosities of dust, [C II ], [C I ], and CO(7–6) with predictions from photo-dissociation and X-ray dominated regions. We find that the former provide better model fits to our data, assuming that the bulk of the emission arises from dense ( n H > 10 4 cm −3 ) clouds with a column density N H ∼ 10 23 cm −2 , exposed to a radiation field with an intensity of G 0 ∼ 10 3 (in Habing units). Our analysis reiterates the presence of massive reservoirs of molecular gas fueling star formation and nuclear accretion in z ∼ 6 quasar host galaxies. It also highlights the power of combined 3 mm and 1 mm observations for quantitative studies of the dense gas content in massive galaxies at cosmic dawn.more » « less
-
Abstract We present Very Large Array C- , X- , and Q -band continuum observations, as well as 1.3 mm continuum and CO(2-1) observations with the Submillimeter Array toward the high-mass protostellar candidate ISOSS J23053+5953 SMM2. Compact centimeter continuum emission was detected near the center of the SMM2 core with a spectral index of 0.24(± 0.15) between 6 and 3.6 cm, and a radio luminosity of 1.3(±0.4) mJy kpc 2 . The 1.3 mm thermal dust emission indicates a mass of the SMM2 core of 45.8 (±13.4) M ⊙ , and a density of 7.1 (±1.2)× 10 6 cm −3 . The CO(2-1) observations reveal a large, massive molecular outflow centered on the SMM2 core. This fast outflow (>50 km s −1 from the cloud systemic velocity) is highly collimated, with a broader, lower-velocity component. The large values for outflow mass (45.2 ± 12.6 M ⊙ ) and momentum rate (6 ± 2 × 10 −3 M ⊙ km s −1 yr −1 ) derived from the CO emission are consistent with those of flows driven by high-mass YSOs. The dynamical timescale of the flow is between 1.5 and 7.2 × 10 4 yr. We also found from the C 18 O to thermal dust emission ratio that CO is depleted by a factor of about 20, possibly due to freeze-out of CO molecules on dust grains. Our data are consistent with previous findings that ISOSS J23053 + 5953 SMM2 is an emerging high-mass protostar in an early phase of evolution, with an ionized jet and a fast, highly collimated, and massive outflow.more » « less
-
Aims. We aim to quantify the relation between the dust-to-gas mass ratio (DTG) and gas-phase metallicity of z = 2.1 − 2.5 luminous galaxies and contrast this high-redshift relation against analogous constraints at z = 0. Methods. We present a sample of ten star-forming main-sequence galaxies in the redshift range 2.1 < z < 2.5 with rest-optical emission-line information available from the MOSDEF survey and with ALMA 1.2 millimetre and CO J = 3 − 2 follow-up observations. The galaxies have stellar masses ranging from 10 10.3 to 10 10.6 M ⊙ and cover a range in star-formation rate from 35 to 145 M ⊙ yr −1 . We calculated the gas-phase oxygen abundance of these galaxies from rest-optical nebular emission lines (8.4 < 12 + log(O/H) < 8.8, corresponding to 0.5−1.25 Z ⊙ ). We estimated the dust and H 2 masses of the galaxies (using a metallicity-dependent CO-to-H 2 conversion factor) from the 1.2 mm and CO J = 3 − 2 observations, respectively, from which we estimated a DTG. Results. We find that the galaxies in this sample follow the trends already observed between CO line luminosity and dust-continuum luminosity from z = 0 to z = 3, extending such trends to fainter galaxies at 2.1 < z < 2.5 than observed to date. We find no second-order metallicity dependence in the CO – dust-continuum luminosity relation for the galaxies presented in this work. The DTGs of main-sequence galaxies at 2.1 < z < 2.5 are consistent with an increase in the DTG with gas-phase metallicity. The metallicity dependence of the DTG is driven by the metallicity dependence of the CO-to-H 2 conversion factor. Galaxies at z = 2.1 − 2.5 are furthermore consistent with the DTG-metallicity relation found at z = 0 (i.e. with no significant evolution), providing relevant constraints for galaxy formation models. These results furthermore imply that the metallicity of galaxies should be taken into account when estimating cold-gas masses from dust-continuum emission, which is especially relevant when studying metal-poor low-mass or high-redshift galaxies.more » « less
-
Abstract Henize 2–10 is a dwarf starburst galaxy hosting a ∼106M⊙black hole (BH) that is driving an ionized outflow and triggering star formation within the central ∼100 pc of the galaxy. Here, we present Atacama Large Millimeter/submillimeter Array continuum observations from 99 to 340 GHz, as well as spectral line observations of the molecules CO (1–0, 3–2), HCN (1–0, 3–2), and HCO+ (1–0, 3–2), with a focus on the BH and its vicinity. Incorporating centimeter-wave radio measurements from the literature, we show that the spectral energy distribution of the BH is dominated by synchrotron emission from 1.4 to 340 GHz, with a spectral index ofα≈ − 0.5. We analyze the spectral line data and identify an elongated molecular gas structure around the BH with a velocity distinct from the surrounding regions. The physical extent of this molecular gas structure is ≈130 pc × 30 pc and the molecular gas mass is ∼106M⊙. Despite an abundance of molecular gas in this general region, the position of the BH is significantly offset from the peak intensity, which may explain why the BH is radiating at a very low Eddington ratio. Our analysis of the spatially resolved line ratio between COJ= 3–2 andJ= 1–0 implies that the CO gas in the vicinity of the BH is highly excited, particularly at the interface between the BH outflow and the regions of triggered star formation. This suggests that the cold molecular gas is being shocked by the bipolar outflow from the BH, supporting the case for positive BH feedback.more » « less