skip to main content


Title: An Improved Baseline for Sentence-level Relation Extraction
Sentence-level relation extraction (RE) aims at identifying the relationship between two entities in a sentence. Many efforts have been devoted to this problem, while the best performing methods are still far from perfect. In this paper, we revisit two problems that affect the performance of existing RE models, namely entity representation and noisy or ill-defined labels. Our improved RE baseline, incorporated with entity representations with typed markers, achieves an F1 of 74.6% on TACRED, significantly outperforms previous SOTA methods. Furthermore, the presented new baseline achieves an F1 of 91.1% on the refined Re-TACRED dataset, demonstrating that the pretrained language models (PLMs) achieve high performance on this task. We release our code to the community for future research.  more » « less
Award ID(s):
2105329
NSF-PAR ID:
10381373
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Relation extraction (RE) aims to extract the relations between entity names from the textual context. In principle, textual context determines the ground-truth relation and the RE models should be able to correctly identify the relations reflected by the textual context. However, existing work has found that the RE models memorize the entity name patterns to make RE predictions while ignoring the textual context. This motivates us to raise the question: are RE models robust to the entity replacements? In this work, we operate the random and type-constrained entity replacements over the RE instances in TACRED and evaluate the state-of-the-art RE models under the entity replacements. We observe the 30% - 50% F1 score drops on the state-of-the-art RE models under entity replacements. These results suggest that we need more efforts to develop effective RE models robust to entity replacements. We release the source code at https://github.com/wangywUST/RobustRE. 
    more » « less
  2. null (Ed.)
    Relation Extraction (RE) is one of the fundamental tasks in Information Extraction. The goal of this task is to find the semantic relations between entity mentions in text. It has been shown in many previous work that the structure of the sentences (i.e., dependency trees) can provide important information/features for the RE models. However, the common limitation of the previous work on RE is the reliance on some external parsers to obtain the syntactic trees for the sentence structures. On the one hand, it is not guaranteed that the independent external parsers can offer the optimal sentence structures for RE and the customized structures for RE might help to further improve the performance. On the other hand, the quality of the external parsers might suffer when applied to different domains, thus also affecting the performance of the RE models on such domains. In order to overcome this issue, we introduce a novel method for RE that simultaneously induces the structures and predicts the relations for the input sentences, thus avoiding the external parsers and potentially leading to better sentence structures for RE. Our general strategy to learn the RE-specific structures is to apply two different methods to infer the structures for the input sentences (i.e., two views). We then introduce several mechanisms to encourage the structure and semantic consistencies between these two views so the effective structure and semantic representations for RE can emerge. We perform extensive experiments on the ACE 2005 and SemEval 2010 datasets to demonstrate the advantages of the proposed method, leading to the state-of-the-art performance on such datasets. 
    more » « less
  3. While fully supervised relation classification (RC) models perform well on large-scale datasets, their performance drops drastically in low-resource settings. As generating annotated examples are expensive, recent zero-shot methods have been proposed that reformulate RC into other NLP tasks for which supervision exists such as textual entailment. However, these methods rely on templates that are manually created which is costly and requires domain expertise. In this paper, we present a novel strategy for template generation for relation classification, which is based on adapting Harris’ distributional similarity principle to templates encoded using contextualized representations. Further, we perform empirical evaluation of different strategies for combining the automatically acquired templates with manual templates. The experimental results on TACRED show that our approach not only performs better than the zero-shot RC methods that only use manual templates, but also that it achieves state-of-the-art performance for zero-shot TACRED at 64.3 F1 score. 
    more » « less
  4. Abstract Importance

    The study highlights the potential of large language models, specifically GPT-3.5 and GPT-4, in processing complex clinical data and extracting meaningful information with minimal training data. By developing and refining prompt-based strategies, we can significantly enhance the models’ performance, making them viable tools for clinical NER tasks and possibly reducing the reliance on extensive annotated datasets.

    Objectives

    This study quantifies the capabilities of GPT-3.5 and GPT-4 for clinical named entity recognition (NER) tasks and proposes task-specific prompts to improve their performance.

    Materials and Methods

    We evaluated these models on 2 clinical NER tasks: (1) to extract medical problems, treatments, and tests from clinical notes in the MTSamples corpus, following the 2010 i2b2 concept extraction shared task, and (2) to identify nervous system disorder-related adverse events from safety reports in the vaccine adverse event reporting system (VAERS). To improve the GPT models' performance, we developed a clinical task-specific prompt framework that includes (1) baseline prompts with task description and format specification, (2) annotation guideline-based prompts, (3) error analysis-based instructions, and (4) annotated samples for few-shot learning. We assessed each prompt's effectiveness and compared the models to BioClinicalBERT.

    Results

    Using baseline prompts, GPT-3.5 and GPT-4 achieved relaxed F1 scores of 0.634, 0.804 for MTSamples and 0.301, 0.593 for VAERS. Additional prompt components consistently improved model performance. When all 4 components were used, GPT-3.5 and GPT-4 achieved relaxed F1 socres of 0.794, 0.861 for MTSamples and 0.676, 0.736 for VAERS, demonstrating the effectiveness of our prompt framework. Although these results trail BioClinicalBERT (F1 of 0.901 for the MTSamples dataset and 0.802 for the VAERS), it is very promising considering few training samples are needed.

    Discussion

    The study’s findings suggest a promising direction in leveraging LLMs for clinical NER tasks. However, while the performance of GPT models improved with task-specific prompts, there's a need for further development and refinement. LLMs like GPT-4 show potential in achieving close performance to state-of-the-art models like BioClinicalBERT, but they still require careful prompt engineering and understanding of task-specific knowledge. The study also underscores the importance of evaluation schemas that accurately reflect the capabilities and performance of LLMs in clinical settings.

    Conclusion

    While direct application of GPT models to clinical NER tasks falls short of optimal performance, our task-specific prompt framework, incorporating medical knowledge and training samples, significantly enhances GPT models' feasibility for potential clinical applications.

     
    more » « less
  5. Clinical Cohort Studies (CCS) are a great source of documented clinical research. Ideally, a clinical expert will interpret these articles for exploratory analysis ranging from drug discovery for evaluating the efficacy of existing drugs in tackling emerging diseases to the first test of newly developed drugs. However, more than 100 CCS articles are published on PubMed every day. As a result, it can take days for a doctor to find articles and extract relevant information. Can we find a way to quickly sift through the long list of these articles faster and document the crucial takeaways from each of these articles? In this work, we propose CCS Explorer, an end-to-end system for relevance prediction of sentences, extractive summarization, and patient, outcome, and intervention entity detection from CCS. CCS Explorer is packaged in a web-based graphical user interface where the user can provide any disease name. CCS Explorer then extracts and aggregates all relevant information from articles on PubMed based on the results of an automatically generated query produced on the back-end. CCS Explorer fine-tunes pre-trained language models based on transformers with additional layers for each of these tasks. We evaluate the models using two publicly available datasets. CCS Explorer obtains a recall of 80.2%, AUC-ROC of 0.843, and an accuracy of 88.3% on sentence relevance prediction using BioBERT and achieves an average Micro F1-Score of 77.8% on Patient, Intervention, Outcome detection (PIO) using PubMedBERT. Thus, CCS Explorer can reliably extract relevant information to summarize articles, saving time by ∼ 660×. 
    more » « less