skip to main content

Title: Earliest known Oldowan artifacts at >2.58 Ma from Ledi-Geraru, Ethiopia, highlight early technological diversity
The manufacture of flaked stone artifacts represents a major milestone in the technology of the human lineage. Although the earliest production of primitive stone tools, predating the genus Homo and emphasizing percussive activities, has been reported at 3.3 million years ago (Ma) from Lomekwi, Kenya, the systematic production of sharp-edged stone tools is unknown before the 2.58–2.55 Ma Oldowan assemblages from Gona, Ethiopia. The organized production of Oldowan stone artifacts is part of a suite of characteristics that is often associated with the adaptive grade shift linked to the genus Homo . Recent discoveries from Ledi-Geraru (LG), Ethiopia, place the first occurrence of Homo ∼250 thousand years earlier than the Oldowan at Gona. Here, we describe a substantial assemblage of systematically flaked stone tools excavated in situ from a stratigraphically constrained context [Bokol Dora 1, (BD 1) hereafter] at LG bracketed between 2.61 and 2.58 Ma. Although perhaps more primitive in some respects, quantitative analysis suggests the BD 1 assemblage fits more closely with the variability previously described for the Oldowan than with the earlier Lomekwian or with stone tools produced by modern nonhuman primates. These differences suggest that hominin technology is distinctly different from generalized tool use that may more » be a shared feature of much of the primate lineage. The BD 1 assemblage, near the origin of our genus, provides a link between behavioral adaptations—in the form of flaked stone artifacts—and the biological evolution of our ancestors. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1853341
Publication Date:
NSF-PAR ID:
10381385
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
24
Page Range or eLocation-ID:
11712 to 11717
ISSN:
0027-8424
Sponsoring Org:
National Science Foundation
More Like this
  1. East Africa has provided the earliest known evidence for Oldowan stone artifacts and hominin-induced stone tool cutmarks dated to ~2.6 million years (Ma) ago. The ~1.8-million-year-old stone artifacts from Ain Hanech (Algeria) were considered to represent the oldest archaeological materials in North Africa. Here we report older stone artifacts and cutmarked bones excavated from two nearby deposits at Ain Boucherit estimated to ~1.9 Ma ago, and the older to ~2.4 Ma ago. Hence, the Ain Boucherit evidence shows that ancestral hominins inhabited the Mediterranean fringe in northern Africa much earlier than previously thought. The evidence strongly argues for early dispersal of stone tool manufacture and use from East Africa or a possible multiple-origin scenario of stone technology in both East and North Africa.

  2. Abstract

    Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from ~620,000 to 275,000 yearsbp(episodes 1–6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7–9 (~275,000–60,000 yearsbp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence ofHomo sapiensin eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10–12 (~60,000–10,000 yearsbp) could have facilitated the global dispersal ofH. sapiens.

  3. Diet provides critical information about the ecology and environment of herbivores. Hence, understanding the dietary strategies of fossil herbivores and the associated temporal changes is one aspect of inferring paleoenvironmental conditions. Here, we present carbon isotope data from more than 1,050 fossil teeth that record the dietary patterns of nine herbivore families in the late Pliocene and early Pleistocene (3.6 to 1.05 Ma) from the Shungura Formation, a hominin-bearing site in southwestern Ethiopia. An increasing trend toward C4herbivory has been observed with attendant reductions in the proportions of browsers and mixed feeders through time. A high proportion of mixed feeders has been observed prior to 2.9 Ma followed by a decrease in the proportion of mixed feeders and an increase in grazers between 2.7 and 1.9 Ma, and a further increase in the proportion of grazers after 1.9 Ma. The collective herbivore fauna shows two major change points in carbon isotope values at ∼2.7 and ∼2.0 Ma. While hominin fossils from the sequence older than 2.7 Ma are attributed toAustralopithecus, the shift at ∼2.7 Ma indicating the expansion of C4grasses on the landscape was concurrent with the first appearance ofParanthropus. The link between the increased C4herbivory and more open landscapesmore »suggests thatAustralopithecuslived in more wooded landscapes compared to later hominins such asParanthropusandHomo, and has implications for key morphological and behavioral adaptations in our lineage.

    « less
  4. Evidence for Quaternary climate change in East Africa has been derived from outcrops on land and lake cores and from marine dust, leaf wax, and pollen records. These data have previously been used to evaluate the impact of climate change on hominin evolution, but correlations have proved to be difficult, given poor data continuity and the great distances between marine cores and terrestrial basins where fossil evidence is located. Here, we present continental coring evidence for progressive aridification since about 575 thousand years before present (ka), based on Lake Magadi (Kenya) sediments. This long-term drying trend was interrupted by many wet–dry cycles, with the greatest variability developing during times of high eccentricity-modulated precession. Intense aridification apparent in the Magadi record took place between 525 and 400 ka, with relatively persistent arid conditions after 350 ka and through to the present. Arid conditions in the Magadi Basin coincide with the Mid-Brunhes Event and overlap with mammalian extinctions in the South Kenya Rift between 500 and 400 ka. The 525 to 400 ka arid phase developed in the South Kenya Rift between the period when the last Acheulean tools are reported (at about 500 ka) and before the appearance of Middle Stonemore »Age artifacts (by about 320 ka). Our data suggest that increasing Middle- to Late-Pleistocene aridification and environmental variability may have been drivers in the physical and cultural evolution ofHomo sapiensin East Africa.

    « less
  5. Abstract

    Human behaviors from toolmaking to language are thought to rely on a uniquely evolved capacity for hierarchical action sequencing. Testing this idea will require objective, generalizable methods for measuring the structural complexity of real-world behavior. Here we present a data-driven approach for extracting action grammars from basic ethograms, exemplified with respect to the evolutionarily relevant behavior of stone toolmaking. We analyzed sequences from the experimental replication of ~ 2.5 Mya Oldowan vs. ~ 0.5 Mya Acheulean tools, finding that, while using the same “alphabet” of elementary actions, Acheulean sequences are quantifiably more complex and Oldowan grammars are a subset of Acheulean grammars. We illustrate the utility of our complexity measures by re-analyzing data from an fMRI study of stone toolmaking to identify brain responses to structural complexity. Beyond specific implications regarding the co-evolution of language and technology, this exercise illustrates the general applicability of our method to investigate naturalistic human behavior and cognition.