skip to main content


Title: Linked fire activity and climate whiplash in California during the early Holocene
Abstract

Recent wildfire activity in semi-arid regions like western North America exceeds the range of historical records. High-resolution paleoclimate archives such as stalagmites could illuminate the link between hydroclimate, vegetation change, and fire activity in pre-anthropogenic climate states beyond the timescale of existing tree-ring records. Here we present an analysis of levoglucosan, a combustion-sensitive anhydrosugar, and lignin oxidation products (LOPs) in a stalagmite, reconstructing fire activity and vegetation composition in the California Coast Range across the 8.2 kyr event. Elevated levoglucosan concentrations suggest increased fire activity while altered LOP compositions indicate a shift toward more woody vegetation during the event. These changes are concurrent with increased hydroclimate volatility as shown by carbon and calcium isotope proxies. Together, these records suggest that climate whiplash (oscillations between extreme wetness and aridity) and fire activity in California, both projected to increase with anthropogenic climate change, were tightly coupled during the early Holocene.

 
more » « less
Award ID(s):
1554998
PAR ID:
10381479
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Boreal forest and tundra biomes are key components of the Earth system because the mobilization of large carbon stocks and changes in energy balance could act as positive feedbacks to ongoing climate change. In Alaska, wildfire is a primary driver of ecosystem structure and function, and a key mechanism coupling high‐latitude ecosystems to global climate. Paleoecological records reveal sensitivity of fire regimes to climatic and vegetation change over centennial–millennial time scales, highlighting increased burning concurrent with warming or elevated landscape flammability. To quantify spatiotemporal patterns in fire‐regime variability, we synthesized 27 published sediment‐charcoal records from four Alaskan ecoregions, and compared patterns to paleoclimate and paleovegetation records. Biomass burning and fire frequency increased significantly in boreal forest ecoregions with the expansion of black spruce, ca. 6,000–4,000 years before present (yr BP). Biomass burning also increased during warm periods, particularly in the Yukon Flats ecoregion from ca. 1,000 to 500 yr BP. Increases in biomass burning concurrent with constant fire return intervals suggest increases in average fire severity (i.e., more biomass burning per fire) during warm periods. Results also indicate increases in biomass burning over the last century across much of Alaska that exceed Holocene maxima, providing important context for ongoing change. Our analysis documents the sensitivity of fire activity to broad‐scale environmental change, including climate warming and biome‐scale shifts in vegetation. The lack of widespread, prolonged fire synchrony suggests regional heterogeneity limited simultaneous fire‐regime change across our study areas during the Holocene. This finding implies broad‐scale resilience of the boreal forest to extensive fire activity, but does not preclude novel responses to 21st‐century changes. If projected increases in fire activity over the 21st century are realized, they would be unprecedented in the context of the last 8,000 yr or more.

     
    more » « less
  2. Abstract

    Climate change is expected to decrease mean precipitation in California, but changes in hydroclimate extremes are likely to have more immediate and significant impacts on California water resources, ecosystems, and economy. Paleoclimate records can provide valuable baseline data for constraining natural hydroclimate variability and improving climate projections, but quantitative precipitation records are limited. A new study by de Wet et al. (2021) provides the first semi‐quantitative record of early Holocene precipitation in central California, based on speleothem calcium isotope (δ44Ca) variations, that indicates that precipitation variability during and preceding the 8.2 kyr event approached or exceeded that of recent decades. This study outlines a new approach for developing more robust and quantitative hydroclimate records, and also highlights that precipitation “whiplash” is a ubiquitous feature of California's climate that we must prepare for, especially given the likelihood that human‐caused climate change is already increasing the frequency and severity of hydrologic extremes.

     
    more » « less
  3. Abstract

    Extreme wind‐driven autumn wildfires are hazardous to life and property, due to their rapid rate of spread. Recent catastrophic autumn wildfires in the western United States co‐occurred with record‐ or near‐record autumn fire weather indices that are a byproduct of extreme fuel dryness and strong offshore dry winds. Here, we use a formal, probabilistic, extreme event attribution analysis to investigate the anthropogenic influence on extreme autumn fire weather in 2017 and 2018. We show that while present‐day anthropogenic climate change has slightly decreased the prevalence of strong offshore downslope winds, it has increased the likelihood of extreme fire weather indices by 40% in areas where recent autumn wind‐driven fires have occurred in northern California and Oregon. The increase was primarily through increased autumn fuel aridity and warmer temperatures during dry wind events. These findings illustrate that anthropogenic climate change is exacerbating autumn fire weather extremes that contribute to high‐impact catastrophic fires in populated regions of the western US.

     
    more » « less
  4. Abstract

    Climate shapes geographic and seasonal patterns in global fire activity by mediating vegetation composition, productivity, and desiccation in conjunction with land‐use and anthropogenic factors. Yet, the degree to which climate variability affects interannual variability in burned area across Earth is less understood. Two decades of satellite‐derived burned area records across forested and nonforested areas were used to examine global interannual climate–fire relationships at ecoregion scales. Measures of fuel aridity exhibited strong positive correlations with forested burned area, with weaker relationships in climatologically drier regions. By contrast, cumulative precipitation antecedent to the fire season exhibited positive correlations to nonforested burned area, with stronger relationships in climatologically drier regions. Climate variability explained roughly one‐third of the interannual variability in burned area across global ecoregions. These results highlight the importance of climate variability in enabling fire activity globally, but also identify regions where anthropogenic and other influences may facilitate weaker relationships. Empirical fire modeling efforts can complement process‐based global fire models to elucidate how fire activity is likely to change amidst complex interactions among climatic, vegetation, and human factors.

     
    more » « less
  5. Abstract Background

    Understanding pre-1850s fire history and its effect on forest structure can provide insights useful for fire managers in developing plans to moderate fire hazards in the face of forecasted climate change. While climate clearly plays a substantial role in California wildfires, traditional use of fire by Indigenous people also affected fire history and forest structure in the Sierra Nevada. Disentangling the effects of human versus climatically-induced fire on Sierran forests from paleoecological records has historically proved challenging, but here we use pollen-based forest structure reconstructions and comparative paleoclimatic-vegetation response modeling to identify periods of human impact over the last 1300 years at Markwood Meadow, Sierra National Forest.

    Results

    We find strong evidence for anthropogenic fires at Markwood Meadow ca. 1550 – 1750 C.E., contemporaneous with archaeological evidence for fundamental shifts in Indigenous lifeways. When we compare our findings to five other paleoecological sites in the central and southern Sierra Nevada, we find evidence for contemporaneous anthropogenic effects on forest structure across a broad swath of cismontane central California. This is significant because it implies that late 19th and early twentieth century forest structure – the structure that land managers most often seek to emulate – was in part the result anthropogenic fire and precolonial resource management.

    Conclusion

    We consequently suggest that modern management strategies consider (1) further incorporating traditional ecological knowledge fire practices in consultation with local tribal groups, and (2) using pollen-based reconstructions to track how forest composition compares to pre-1850 C.E. conditions rather than the novel forest states encountered in the late 20th and early twenty-first centuries. These strategies could help mitigate the effects of forecast climate change and associated megafires on forests and on socio-ecological systems in a more comprehensive manner.

     
    more » « less