skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generative design of stable semiconductor materials using deep learning and density functional theory
Abstract Semiconductor device technology has greatly developed in complexity since discovering the bipolar transistor. In this work, we developed a computational pipeline to discover stable semiconductors by combining generative adversarial networks (GAN), classifiers, and high-throughput first-principles calculations. We used CubicGAN, a GAN-based algorithm for generating cubic materials and developed a classifier to screen the semiconductors and studied their stability using first principles. We found 12 stable AA$${}^{\prime}$$ MH6semiconductors in the F-43m space group including BaNaRhH6, BaSrZnH6, BaCsAlH6, SrTlIrH6, KNaNiH6, NaYRuH6, CsKSiH6, CaScMnH6, YZnMnH6, NaZrMnH6, AgZrMnH6, and ScZnMnH6. Previous research reported that five AA$${}^{\prime}$$ IrH6 semiconductors with the same space group were synthesized. Our research shows that AA$${}^{\prime}$$ MnH6and NaYRuH6semiconductors have considerably different properties compared to the rest of the AA$${}^{\prime}$$ MH6semiconductors. Based on the accurate hybrid functional calculations, AA$${}^{\prime}$$ MH6semiconductors are found to be wide-bandgap semiconductors. Moreover, BaSrZnH6and KNaNiH6are direct-bandgap semiconductors, whereas others exhibit indirect bandgaps.  more » « less
Award ID(s):
1940099 1905775
PAR ID:
10381640
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
8
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AbstractThe characterization of normal mode (CNM) procedure coupled with an adiabatic connection scheme (ACS) between local and normal vibrational modes, both being a part of the Local Vibrational Mode theory developed in our group, can identify spectral changes as structural fingerprints that monitor symmetry alterations, such as those caused by Jahn-Teller (JT) distortions. Employing the PBE0/Def2-TZVP level of theory, we investigated in this proof-of-concept study the hexaaquachromium cation case,$$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ [ Cr ( OH 2 ) 6 ] 3 + /$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ [ Cr ( OH 2 ) 6 ] 2 + , as a commonly known example for a JT distortion, followed by the more difficult ferrous and ferric hexacyanide anion case,$$\mathrm {[Fe{(CN)}_6]^{4-}}$$ [ Fe ( CN ) 6 ] 4 - /$$\mathrm {[Fe{(CN)}_6]^{3-}}$$ [ Fe ( CN ) 6 ] 3 - . We found that in both cases CNM of the characteristic normal vibrational modes reflects delocalization consistent with high symmetry and ACS confirms symmetry breaking, as evidenced by the separation of axial and equatorial group frequencies. As underlined by the Cremer-Kraka criterion for covalent bonding, from$$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ [ Cr ( OH 2 ) 6 ] 3 + to$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ [ Cr ( OH 2 ) 6 ] 2 + there is an increase in axial covalency whereas the equatorial bonds shift toward electrostatic character. From$$\mathrm {[Fe{(CN)}_6]^{4-}}$$ [ Fe ( CN ) 6 ] 4 - to$$\mathrm {[Fe{(CN)}_6]^{3-}}$$ [ Fe ( CN ) 6 ] 3 - we observed an increase in covalency without altering the bond nature. Distinct$$\pi $$ π back-donation disparity could be confirmed by comparison with the isolated CN$$^-$$ - system. In summary, our study positions the CNM/ACS protocol as a robust tool for investigating less-explored JT distortions, paving the way for future applications. Graphical abstractThe adiabatic connection scheme relates local to normal modes, with symmetry breaking giving rise to axial and equatorial group local frequencies 
    more » « less
  2. A<sc>bstract</sc> In this paper we explorepp→W±(ℓ±ν)γto$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ O 1 / Λ 4 in the SMEFT expansion. Calculations to this order are necessary to properly capture SMEFT contributions that grow with energy, as the interference between energy-enhanced SMEFT effects at$$ \mathcal{O}\left(1/{\Lambda}^2\right) $$ O 1 / Λ 2 and the Standard Model is suppressed. We find that there are several dimension eight operators that interfere with the Standard Model and lead to the same energy growth, ~$$ \mathcal{O}\left({E}^4/{\Lambda}^4\right) $$ O E 4 / Λ 4 , as dimension six squared. While energy-enhanced SMEFT contributions are a main focus, our calculation includes the complete set of$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$ O 1 / Λ 4 SMEFT effects consistent with U(3)5flavor symmetry. Additionally, we include the decay of theW±→ ℓ±ν, making the calculation actually$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ q ¯ q ± νγ . As such, we are able to study the impact of non-resonant SMEFT operators, such as$$ \left({L}^{\dagger }{\overline{\sigma}}^{\mu }{\tau}^IL\right)\left({Q}^{\dagger }{\overline{\sigma}}^{\nu }{\tau}^IQ\right) $$ L σ ¯ μ τ I L Q σ ¯ ν τ I Q Bμν, which contribute to$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$ q ¯ q ± νγ directly and not to$$ \overline{q}{q}^{\prime}\to {W}^{\pm}\gamma $$ q ¯ q W ± γ . We show several distributions to illustrate the shape differences of the different contributions. 
    more » « less
  3. Abstract Transitions between distinct obstructed atomic insulators (OAIs) protected by crystalline symmetries, where electrons form molecular orbitals centering away from the atom positions, must go through an intermediate metallic phase. In this work, we find that the intermediate metals will become a scale-invariant critical metal phase (CMP) under certain types of quenched disorder that respect the magnetic crystalline symmetries on average. We explicitly construct models respecting averageC2zT, m, andC4zTand show their scale-invariance under chemical potential disorder by the finite-size scaling method. Conventional theories, such as weak anti-localization and topological phase transition, cannot explain the underlying mechanism. A quantitative mapping between lattice and network models shows that the CMP can be understood through a semi-classical percolation problem. Ultimately, we systematically classify all the OAI transitions protected by (magnetic) groups$$Pm,P{2}^{{\prime} },P{4}^{{\prime} }$$ P m , P 2 , P 4 , and$$P{6}^{{\prime} }$$ P 6 with and without spin-orbit coupling, most of which can support CMP. 
    more » « less
  4. Abstract Let 𝜋 and π \pi^{\prime}be cuspidal automorphic representations of GL ( n ) \mathrm{GL}(n)and GL ( n ) \mathrm{GL}(n^{\prime})with unitary central characters.We establish a new zero-free region for all GL ( 1 ) \mathrm{GL}(1)-twists of the Rankin–Selberg 𝐿-function L ( s , π × π ) L(s,\pi\times\pi^{\prime}), generalizing Siegel’s celebrated work on Dirichlet 𝐿-functions.As an application, we prove the first unconditional Siegel–Walfisz theorem for the Dirichlet coefficients of L ( s , π × π ) / L ( s , π × π ) -L^{\prime}(s,\pi\times\pi^{\prime})/L(s,\pi\times\pi^{\prime}).Also, for n 8 n\leq 8, we extend the region of holomorphy and nonvanishing for the twisted symmetric power 𝐿-functions L ( s , π , Sym n χ ) L(s,\pi,\mathrm{Sym}^{n}\otimes\chi)of any cuspidal automorphic representation of GL ( 2 ) \mathrm{GL}(2). 
    more » « less
  5. A<sc>bstract</sc> We develop Standard Model Effective Field Theory (SMEFT) predictions ofσ($$ \mathcal{GG} $$ GG →h), Γ(h→$$ \mathcal{GG} $$ GG ), Γ(h→$$ \mathcal{AA} $$ AA ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ(h→$$ \overline{\Psi}\Psi $$ Ψ ¯ Ψ ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ, σto a full set of corrections at$$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$ O v ¯ T 2 / Λ 2 16 π 2 2 and$$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$ O v ¯ T 4 / Λ 4 , where$$ {\overline{v}}_T $$ v ¯ T is the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ(h→$$ \overline{\Psi}\Psi $$ Ψ ¯ Ψ ), we include results at$$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$ O v ¯ T 2 / Λ 2 16 π 2 in the limit where subleadingmΨ→ 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects. 
    more » « less