skip to main content


Title: Epidemic management and control through risk-dependent individual contact interventions
Testing, contact tracing, and isolation (TTI) is an epidemic management and control approach that is difficult to implement at scale because it relies on manual tracing of contacts. Exposure notification apps have been developed to digitally scale up TTI by harnessing contact data obtained from mobile devices; however, exposure notification apps provide users only with limited binary information when they have been directly exposed to a known infection source. Here we demonstrate a scalable improvement to TTI and exposure notification apps that uses data assimilation (DA) on a contact network. Network DA exploits diverse sources of health data together with the proximity data from mobile devices that exposure notification apps rely upon. It provides users with continuously assessed individual risks of exposure and infection, which can form the basis for targeting individual contact interventions. Simulations of the early COVID-19 epidemic in New York City are used to establish proof-of-concept. In the simulations, network DA identifies up to a factor 2 more infections than contact tracing when both harness the same contact data and diagnostic test data. This remains true even when only a relatively small fraction of the population uses network DA. When a sufficiently large fraction of the population (≳ 75%) uses network DA and complies with individual contact interventions, targeting contact interventions with network DA reduces deaths by up to a factor 4 relative to TTI. Network DA can be implemented by expanding the computational backend of existing exposure notification apps, thus greatly enhancing their capabilities. Implemented at scale, it has the potential to precisely and effectively control future epidemics while minimizing economic disruption.  more » « less
Award ID(s):
1835576
NSF-PAR ID:
10381663
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Editor(s):
Moreno, Yamir
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
18
Issue:
6
ISSN:
1553-7358
Page Range / eLocation ID:
e1010171
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Witnessing the blooming adoption of push notifications on mobile devices, this new message delivery paradigm has become pervasive in diverse applications. Accompanying with its broad adoption, the potential security risks and privacy exposure issues raise public concerns regarding its great social impacts. This paper conducts the first attempt to exploit the mobile notification ecosystem. By dissecting its structural elements and implementation process, a comprehensive vulnerability analysis is conducted towards the complete flow of mobile notification from platform enrollment to messaging. Meanwhile, for privacy exposure, we first examine the implementation of privacy policy compliance by proposing a three-level inspection approach to guide our analysis. Then, our top-down methods from documentation analysis, application network traffic study, to static analysis expose the illicit data collection behaviors in released applications. In addition, we uncover the potential privacy inference resulted from the notification monitoring. To support our analysis, we conduct empirical studies on 12 most popular notification platforms and perform static analysis over 30,000+ applications. We discover: 1) six platforms either provide ambiguous KEY naming rules or offer vulnerable messaging APIs; 2) privacy policy compliance implementations are either stagnated at the documentation stages (8 of 12 platforms) or never implemented in apps, resulting in billions of users suffering from privacy exposure; and 3) some apps can stealthily monitor notification messages delivering to other apps, potentially incurring user privacy inference risks. Our study raises the urgent demand for better regulations of mobile notification deployment. 
    more » « less
  2. COVID-19 exposure-notification apps have struggled to gain adoption. Existing literature posits as potential causes of this low adoption: privacy concerns, insufficient data transparency, and the type of appeal – collective- vs. individual-good – used to frame the app. As policy guidance suggests using tailored advertising to evaluate the effects of these factors, we present the first field study of COVID-19 contact tracing apps with a randomized, control trial of 14 different advertisements for CovidDefense, Louisiana’s COVID-19 exposure-notification app. We find that all three hypothesized factors – privacy, data transparency, and appeals framing – relate to app adoption, even when controlling for age, gender, and community density. Our results offer (1) the first field evidence supporting the use of collective-good appeals, (2) nuanced findings regarding the efficacy of data and privacy transparency, the effects of which are moderated by appeal framing and potential users’ demographics, and (3) field-evidence-based guidance for future efforts to encourage pro-social health technology adoption. 
    more » « less
  3. With the recent advances in human sensing, the push to integrate human mobility tracking with epidemic modeling highlights the lack of groundwork at the mesoscale (e.g., city-level) for both contact tracing and transmission dynamics. Although GPS data has been used to study city-level outbreaks in the past, existing approaches fail to capture the path of infection at the individual level. Consequently, in this paper, we extend epidemics prediction from estimating the size of an outbreak at the population level to estimating the individuals who may likely get infected within a finite period of time. To this end, we propose a network science based method to first build and then prune the dynamic contact networks for recurring interactions; these networks can serve as the backbone topology for mechanistic epidemics modeling. We test our method using Foursquare’s Points of Interest (POI) smart phone geolocation data from over 1.3 million devices to better approximate the COVID-19 infection curves for two major (yet very different) US cities, (i.e., Austin and New York City), while maintaining the granularity of individual transmissions and reducing model uncertainty. Our method provides a foundation for building a disease prediction framework at the mesoscale that can help both policy makers and individuals better understand their estimated state of health and help the pandemic mitigation efforts. 
    more » « less
  4. null (Ed.)
    The global coronavirus pandemic has raised important questions regarding how to balance public health concerns with privacy protections for individual citizens. In this essay, we evaluate contact tracing apps, which have been offered as a technological solution to minimize the spread of COVID-19. We argue that apps such as those built on Google and Apple’s “exposure notification system” should be evaluated in terms of the contextual integrity of information flows; in other words, the appropriateness of sharing health and location data will be contextually dependent on factors such as who will have access to data, as well as the transmission principles underlying data transfer. We also consider the role of prevailing social and political values in this assessment, including the large-scale social benefits that can be obtained through such information sharing. However, caution should be taken in violating contextual integrity, even in the case of a pandemic, because it risks a long-term loss of autonomy and growing function creep for surveillance and monitoring technologies. 
    more » « less
  5. The ubiquity of mobile devices nowadays necessitates securing the apps and user information stored therein. However, existing one-time entry-point authentication mechanisms and enhanced security mechanisms such as Multi-Factor Authentication (MFA) are prone to a wide vector of attacks. Furthermore, MFA also introduces friction to the user experience. Therefore, what is needed is continuous authentication that once passing the entry-point authentication, will protect the mobile devices on a continuous basis by confirming the legitimate owner of the device and locking out detected impostor activities. Hence, more research is needed on the dynamic methods of mobile security such as behavioral biometrics-based continuous authentication, which is cost-effective and passive as the data utilized to authenticate users are logged from the phone's sensors. However, currently, there are not many mobile authentication datasets to perform benchmarking research. In this work, we share two novel mobile datasets (Clarkson University (CU) Mobile datasets I and II) consisting of multi-modality behavioral biometrics data from 49 and 39 users respectively (88 users in total). Each of our datasets consists of modalities such as swipes, keystrokes, acceleration, gyroscope, and pattern-tracing strokes. These modalities are collected when users are filling out a registration form in sitting both as genuine and impostor users. To exhibit the usefulness of the datasets, we have performed initial experiments on selected individual modalities from the datasets as well as the fusion of simultaneously available modalities. 
    more » « less