skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Widespread and increased drilling of wells into fossil aquifers in the USA
Abstract Most stored groundwater is ‘fossil’ in its age, having been under the ground for more than ~12 thousand years. Mapping where wells tap fossil aquifers is relevant for water quality and quantity management. Nevertheless, the prevalence of wells that tap fossil aquifers is not known. Here we show that wells that are sufficiently deep to tap fossil aquifers are widespread, though they remain outnumbered by shallower wells in most areas. Moreover, the proportion of newly drilled wells that are deep enough to tap fossil aquifers has increased over recent decades. However, this widespread and increased drilling of wells into fossil aquifers is not necessarily associated with groundwater depletion, emphasizing that the presence of fossil groundwater does not necessarily indicate a non-renewable water supply. Our results highlight the importance of safeguarding fossil groundwater quality and quantity to meet present and future water demands.  more » « less
Award ID(s):
2048227
PAR ID:
10381717
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Water supplies for household use and irrigated agriculture rely on groundwater wells. When wells are drilled into a highly pressurized aquifer, groundwater may flow up the well and onto the land surface without pumping. These flowing artesian wells were common in the early 1900s in the United States before intensive groundwater withdrawals began, but their present-day prevalence remains unknown. Here, we compile and analyze ten thousand well water observations made more than a century ago. We show that flowing artesian conditions characterized ~61% of wells tapping confined aquifers before 1910, but only ~4% of wells tapping confined aquifers today. This pervasive loss of flowing artesian conditions evidences a widespread depressurization of confined aquifers after a century of intensive groundwater use in the United States. We conclude that this depressurization of confined aquifers has profoundly changed groundwater storage and flow, increasing the vulnerability of deep aquifers to pollutants and contributing to land subsidence. 
    more » « less
  2. Coastal agricultural zones are experiencing salinization due to accelerating rates of sea-level rise, causing reduction in crop yields and abandonment of farmland. Understanding mechanisms and drivers of this seawater intrusion (SWI) is key to mitigating its effects and predicting future vulnerability of groundwater resources to salinization. We implemented a monitoring network of pressure and specific conductivity (SC) sensors in wells and surface waters to target marsh-adjacent agricultural areas in greater Dover, Delaware. Recorded water levels and SC over a period of three years show that the mechanisms and timescales of SWI are controlled by local hydrology, geomorphology, and geology. Monitored wells did not indicate widespread salinization of deep groundwater in the surficial aquifer. However, monitored surface water bodies and shallow (<4m deep) wells did show SC fluctuations due to tides and storm events, in one case leading to salinization of deeper (18m deep) groundwater. Seasonal peaks in SC occurred during late summer months. Seasonal and interannual variation of SC was also influenced by relative sea level. The data collected in this study data highlight the mechanisms by which surface water-groundwater connections lead to salinization of aquifers inland, before SWI is detected in deeper groundwater nearer the coastline. Sharing of our data with stakeholders has led to the implementation of SWI mitigation efforts, illustrating the importance of strategic monitoring and stakeholder engagement to support coastal resilience. 
    more » « less
  3. Abstract Groundwater resources are vital to ecosystems and livelihoods. Excessive groundwater withdrawals can cause groundwater levels to decline1–10, resulting in seawater intrusion11, land subsidence12,13, streamflow depletion14–16and wells running dry17. However, the global pace and prevalence of local groundwater declines are poorly constrained, because in situ groundwater levels have not been synthesized at the global scale. Here we analyse in situ groundwater-level trends for 170,000 monitoring wells and 1,693 aquifer systems in countries that encompass approximately 75% of global groundwater withdrawals18. We show that rapid groundwater-level declines (>0.5 m year−1) are widespread in the twenty-first century, especially in dry regions with extensive croplands. Critically, we also show that groundwater-level declines have accelerated over the past four decades in 30% of the world’s regional aquifers. This widespread acceleration in groundwater-level deepening highlights an urgent need for more effective measures to address groundwater depletion. Our analysis also reveals specific cases in which depletion trends have reversed following policy changes, managed aquifer recharge and surface-water diversions, demonstrating the potential for depleted aquifer systems to recover. 
    more » « less
  4. Abstract Aquifers supporting irrigated agriculture are a resource of global importance. Many of these systems, however, are experiencing significant pumping‐induced stress that threatens their continued viability as a water source for irrigation. Reductions in pumping are often the only option to extend the lifespans of these aquifers and the agricultural production they support. The impact of reductions depends on a quantity known as “net inflow” or “capture.” We use data from a network of wells in the western Kansas portions of the High Plains aquifer in the central United States to demonstrate the importance of net inflow, how it can be estimated in the field, how it might vary in response to pumping reductions, and why use of “net inflow” may be preferred over “capture” in certain contexts. Net inflow has remained approximately constant over much of western Kansas for at least the last 15 to 25 years, thereby allowing it to serve as a target for sustainability efforts. The percent pumping reduction required to reach net inflow (i.e., stabilize water levels for the near term [years to a few decades]) can vary greatly over this region, which has important implications for groundwater management. However, the reduction does appear practically achievable (less than 30%) in many areas. The field‐determined net inflow can play an important role in calibration of regional groundwater models; failure to reproduce its magnitude and temporal variations should prompt further calibration. Although net inflow is a universally applicable concept, the reliability of field estimates is greatest in seasonally pumped aquifers. 
    more » « less
  5. Fossil groundwaters make up a substantial fraction of the Earth's fresh water and are being targeted for water supply wells at increasing rates. These groundwaters were recharged more than 12,000 years ago, often in climate conditions that were much different from those of today. Because of the long renewal times involved, fossil groundwaters have often been classified as nonrenewable. However, groundwater ages provide little insight into how water levels and fluxes will change as the result of pumping. The relationship between groundwater ages and these outcome-based metrics of renewability is not straightforward. Therefore, whether a groundwater is fossil or not may have little to do with its renewability. The hydraulic response of an aquifer system to pumping is not strongly related to groundwater age. The use of both modern and fossil groundwater can be unsustainable. 
    more » « less