skip to main content


Title: Glacier thickness and ice volume of the Northern Andes
Abstract

Tropical glacier melt provides valuable water to surrounding communities, but climate change is projected to cause the demise of many of these glaciers within the coming century. Understanding the future of tropical glaciers requires a detailed record of their thicknesses and volumes, which is currently lacking in the Northern Andes. We calculate present-day (2015–2021) ice-thicknesses for all glaciers in Colombia and Ecuador using six different methods, and combine these into multi-model ensemble mean ice thickness and volume maps. We compare our results against available field-based measurements, and show that current ice volumes in Ecuador and Colombia are 2.49 ± 0.25 km3and 1.68 ± 0.24 km3respectively. We detected no motion on any remaining ice in Venezuela. The overall ice volume in the region, 4.17 ± 0.35 km3, is half of the previous best estimate of 8.11 km3. These data can be used to better evaluate the status and distribution of water resources, as input for models of future glacier change, and to assess regional geohazards associated with ice-clad volcanoes.

 
more » « less
Award ID(s):
1759071
PAR ID:
10381726
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
9
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With a unique biogeophysical signature relative to other freshwater sources, meltwater from glaciers plays a crucial role in the hydrological and ecological regime of high latitude coastal areas. Today, as glaciers worldwide exhibit persistent negative mass balance, glacier runoff is changing in both magnitude and timing, with potential downstream impacts on infrastructure, ecosystems, and ecosystem resources. However, runoff trends may be difficult to detect in coastal systems with large precipitation variability. Here, we use the coupled energy balance and water routing model SnowModel‐HydroFlow to examine changes in timing and magnitude of runoff from the western Juneau Icefield in Southeast Alaska between 1980 and 2016. We find that under sustained glacier mass loss (−0.57 ± 0.12 m w. e. a−1), several hydrological variables related to runoff show increasing trends. This includes annual and spring glacier ice melt volumes (+10% and +16% decade−1) which, because of higher proportions of precipitation, translate to smaller increases in glacier runoff (+3% and +7% decade−1) and total watershed runoff (+1.4% and +3% decade−1). These results suggest that the western Juneau Icefield watersheds are still in an increasing glacier runoff period prior to reaching “peak water.” In terms of timing, we find that maximum glacier ice melt is occurring earlier (2.5 days decade−1), indicating a change in the source and quality of freshwater being delivered downstream in the early summer. Our findings highlight that even in maritime climates with large precipitation variability, high latitude coastal watersheds are experiencing hydrological regime change driven by ongoing glacier mass loss.

     
    more » « less
  2. Abstract

    The Northern and Southern Patagonian Icefields are rapidly losing volume, with current volume loss rates greater than 20 km3a−1. However, details of the spatial and temporal distribution of their volume loss remain uncertain. We evaluate the rate of 21st-century glacier volume loss using the hydrological balance of four glacierised Patagonian river basins. We isolate the streamflow contribution from changes in ice volume and evaluate whether the rate of volume loss has decreased, increased, or remained constant. Out of 11 glacierised sub-basins, seven exhibit significant increases in the rate of ice volume loss, with a 2006–2019 time integrated anomaly in the rate of glacier volume loss of 135 ± 50 km3. This anomaly in the rate of glacier-volume-loss is spatially heterogeneous, varying from a 7.06 ± 1.69 m a−1increase in ice loss to a 3.18 ± 1.48 m a−1decrease in ice loss. Greatest increases in the rate of ice loss are found in the early spring and late summer, suggesting a prolonging of the melt season. Our results highlight increasing, and in some cases accelerating, rates of volume loss of Patagonia's lake-terminating glaciers, with a 2006–2019 anomaly in the rate of glacier volume loss contributing an additional 0.027 ± 0.01 mm a−1of global mean sea-level rise.

     
    more » « less
  3. Abstract

    Ice dynamic change is the primary cause of mass loss from the Antarctic Ice Sheet, thus it is important to understand the processes driving ice-ocean interactions and the timescale on which major change can occur. Here we use satellite observations to measure a rapid increase in speed and collapse of the ice shelf fronting Cadman Glacier in the absence of surface meltwater ponding. Between November 2018 and December 2019 ice speed increased by 94 ± 4% (1.47 ± 0.6 km/yr), ice discharge increased by 0.52 ± 0.21 Gt/yr, and the calving front retreated by 8 km with dynamic thinning on grounded ice of 20.1 ± 2.6 m/yr. This change was concurrent with a positive temperature anomaly in the upper ocean, where a 400 m deep channel allowed warm water to reach Cadman Glacier driving the dynamic activation, while neighbouring Funk and Lever Glaciers were protected by bathymetric sills across their fjords. Our results show that forcing by warm ocean water can cause the rapid onset of dynamic imbalance and increased ice discharge from glaciers on the Antarctic Peninsula, highlighting the region’s sensitivity to future climate variability.

     
    more » « less
  4. Abstract

    Globally, glaciers are shrinking in response to climate change, with implications for global sea level rise as well as downstream ecosystems and water resources. Sliding at the ice‐bed interface (basal motion) provides a mechanism for glaciers to respond rapidly to climate change. While the short‐term dynamics of glacier basal motion (<10 years) have received substantial attention, little is known about how basal motion and its sensitivity to subglacial hydrology changes over long (>50 year) timescales—this knowledge is required for accurate prediction of future glacier change. We compare historical data with modern estimates from field and satellite data at Athabasca Glacier and show that the glacier thinned by 60 m (−21%) over 1961–2020. However, a concurrent increase in surface slope results in minimal change in the average driving stress (−6 kPa and −4%). These geometric changes coincide with relatively uniform slowing (−15 m a−1and −45%). Simplified ice modeling suggests that declining basal motion accounts for most of this slow down (91% on average and 46% at minimum). A decline in basal motion can be explained by increasing basal friction resulting from geometric change in addition to increasing meltwater flux through a more efficient subglacial hydrologic system. These results highlight the need to include time‐varying dynamics of basal motion in glacier models and analyses. If these findings are generalizable, they suggest that declining basal motion reduces the flux of ice to lower elevations, helping to mitigate glacier mass loss in a warming climate.

     
    more » « less
  5. Abstract

    On 15 January 2022, Hunga volcano erupted, creating an extensive and high-reaching umbrella cloud over the open ocean, hindering traditional isopach mapping and fallout volume estimation. In MODIS satellite imagery, ocean surface water was discolored around Hunga following the eruption, which we attribute to ash fallout from the umbrella cloud. By relating intensity of ocean discoloration to fall deposit thicknesses in the Kingdom of Tonga, we develop a methodology for estimating airfall volume over the open ocean. Ash thickness measurements from 41 locations are used to fit a linear relationship between ash thickness and ocean reflectance. This produces a minimum airfall volume estimate of$${1.8}_{-0.4}^{+0.3}$$1.8-0.4+0.3km3. The whole eruption produced > 6.3 km3of uncompacted pyroclastic material on the seafloor and a caldera volume change of 6 km3DRE. Our fall estimates are consistent with the interpretation that most of the seafloor deposits were emplaced by gravity currents rather than fall deposits. Our proposed method does not account for the largest grain sizes, so is thus a minimum estimate. However, this new ocean-discoloration method provides an airfall volume estimate consistent with other independent measures of the plume and is thus effective for rapidly estimating fallout volumes in future volcanic eruptions over oceans.

     
    more » « less