skip to main content

Title: Sleuthing out exotic quantum spin liquidity in the pyrochlore magnet Ce2Zr2O7

The search for quantum spin liquids—topological magnets with fractionalized excitations—has been a central theme in condensed matter and materials physics. Despite numerous theoretical proposals, connecting experiment with detailed theory exhibiting a robust quantum spin liquid has remained a central challenge. Here, focusing on the strongly spin-orbit coupled effectiveS = 1/2 pyrochlore magnet Ce2Zr2O7, we analyze recent thermodynamic and neutron-scattering experiments, to identify a microscopic effective Hamiltonian through a combination of finite temperature Lanczos, Monte Carlo, and analytical spin dynamics calculations. Its parameter values suggest the existence of an exotic phase, aπ-flux U(1) quantum spin liquid. Intriguingly, the octupolar nature of the moments makes them less prone to be affected by magnetic disorder, while also hiding some otherwise characteristic signatures from neutrons, making this spin liquid arguably more stable than its more conventional counterparts.

; ; ; ; ;
Award ID(s):
1917511 2046570
Publication Date:
Journal Name:
npj Quantum Materials
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Collective behaviour of electrons, frustration induced quantum fluctuations and entanglement in quantum materials underlie some of the emergent quantum phenomena with exotic quasi-particle excitations that are highly relevant for technological applications. Herein, we present our thermodynamic and muon spin relaxation measurements, complemented by ab initio density functional theory and exact diagonalization results, on the recently synthesized frustrated antiferromagnet Li4CuTeO6, in which Cu2+ions (S= 1/2) constitute disordered spin chains and ladders along the crystallographic [101] direction with weak random inter-chain couplings. Our thermodynamic experiments detect neither long-range magnetic ordering nor spin freezing down to 45 mK despite the presence of strong antiferromagnetic interaction between Cu2+moments leading to a large effective Curie-Weiss temperature of − 154 K. Muon spin relaxation results are consistent with thermodynamic results. The temperature and magnetic field scaling of magnetization and specific heat reveal a data collapse pointing towards the presence of random-singlets within a disorder-driven correlated and dynamic ground-state in this frustrated antiferromagnet.

  2. Abstract

    Quantum spin systems such as magnetic insulators usually show magnetic order, but such classical states can give way toquantum liquids with exotic entanglementthrough two known mechanisms of frustration: geometric frustration in lattices with triangle motifs, and spin-orbit-coupling frustration in the exactly solvable quantum liquid of Kitaev’s honeycomb lattice. Here we present the experimental observation of a new kind of frustrated quantum liquid arising in an unlikely place: the magnetic insulator Ba4Ir3O10where Ir3O12trimers form an unfrustrated square lattice. The crystal structure shows no apparent spin chains. Experimentally we find a quantum liquid state persisting down to 0.2 K that is stabilized by strong antiferromagnetic interaction with Curie–Weiss temperature ranging from −766 to −169 K due to magnetic anisotropy. The anisotropy-averaged frustration parameter is 2000, seldom seen in iridates. Heat capacity and thermal conductivity are both linear at low temperatures, a familiar feature in metals but here in an insulator pointing to an exotic quantum liquid state; a mere 2% Sr substitution for Ba produces long-range order at 130 K and destroys the linear-T features. Although the Ir4+(5d5) ions in Ba4Ir3O10appear to form Ir3O12trimers of face-sharing IrO6octahedra, we propose that intra-trimer exchange is reduced and the lattice recombines into an array of coupled 1Dmore »chains with additional spins. An extreme limit of decoupled 1D chains can explain most but not all of the striking experimental observations, indicating that the inter-chain coupling plays an important role in the frustration mechanism leading to this quantum liquid.

    « less
  3. Abstract

    The bond-disordered Kitaev model attracts much attention due to the experimental relevance inα-RuCl3andA3LiIr2O6(A= H, D, Ag, etc.). Applying a magnetic field to break the time-reversal symmetry leads to a strong modulation in mass terms for Dirac cones. Because of the smallness of the flux gap of the Kitaev model, a small bond disorder can have large influence on itinerant Majorana fermions. The quantization of the thermal Hall conductivityκxy/Tdisappears by a quantum Hall transition induced by a small disorder, andκxy/Tshows a rapid crossover into a state with a negligible Hall current. We call this immobile liquid state Anderson–Kitaev spin liquid (AKSL). Especially, the critical disorder strengthδJc1~ 0.05 in the unit of the Kitaev interaction would have many implications for the stability of Kitaev spin liquids.

  4. Abstract

    A pair-density-wave (PDW) is a superconducting state with an oscillating order parameter. A microscopic mechanism that can give rise to it has been long sought but has not yet been established by any controlled calculation. Here we report a density-matrix renormalization-group (DMRG) study of an effectivet-J-Vmodel, which is equivalent to the Holstein-Hubbard model in a strong-coupling limit, on long two-, four-, and six-leg triangular cylinders. While a state with long-range PDW order is precluded in one dimension, we find strong quasi-long-range PDW order with a divergent PDW susceptibility as well as the spontaneous breaking of time-reversal and inversion symmetries. Despite the strong interactions, the underlying Fermi surfaces and electron pockets around theKand$${K}^{\prime}$$Kpoints in the Brillouin zone can be identified. We conclude that the state is valley-polarized and that the PDW arises from intra-pocket pairing with an incommensurate center of mass momentum. In the two-leg case, the exponential decay of spin correlations and the measured central chargec ≈ 1 are consistent with an unusual realization of a Luther-Emery liquid.

  5. Abstract

    We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion ofσrv=2.50.8+1.3km s−1, which results in a dynamical mass ofM1/2(rh)=84+12×105Mand a mass-to-light ratio ofM/LV=440250+650M/L. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M/L). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in linemore »with its orbital parameters. Intriguingly, Grus I has among the lowest central densities (ρ1/23.52.1+5.7×107Mkpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies.

    « less