Abstract This work reports on the hardware implementation of analog dot-product operation on arrays of 2D hexagonal boron nitride (h-BN) memristors. This extends beyond previous work that studied isolated device characteristics towards the application of analog neural network accelerators based on 2D memristor arrays. The wafer-level fabrication of the memristor arrays is enabled by large-area transfer of CVD-grown few-layer (8 layers) h-BN films. Individual devices achieve an on/off ratio of >10, low voltage operation (~0.5 Vset/Vreset), good endurance (>6,000 programming steps), and good retention (>104 s). The dot-product operation shows excellent linearity and repeatability, with low read energy consumption (~200 aJ to 20 fJ per operation), with minimal error and deviation over various measurement cycles. Moreover, we present the implementation of a stochastic logistic regression algorithm in 2D h-BN memristor hardware for the classification of noisy images. The promising resistive switching characteristics, performance of dot-product computation, and successful demonstration of logistic regression in h-BN memristors signify an important step towards the integration of 2D materials for next-generation neuromorphic computing systems.
more »
« less
Hexagonal boron nitride (h-BN) memristor arrays for analog-based machine learning hardware
Abstract Recent studies of resistive switching devices with hexagonal boron nitride (h-BN) as the switching layer have shown the potential of two-dimensional (2D) materials for memory and neuromorphic computing applications. The use of 2D materials allows scaling the resistive switching layer thickness to sub-nanometer dimensions enabling devices to operate with low switching voltages and high programming speeds, offering large improvements in efficiency and performance as well as ultra-dense integration. These characteristics are of interest for the implementation of neuromorphic computing and machine learning hardware based on memristor crossbars. However, existing demonstrations of h-BN memristors focus on single isolated device switching properties and lack attention to fundamental machine learning functions. This paper demonstrates the hardware implementation of dot product operations, a basic analog function ubiquitous in machine learning, using h-BN memristor arrays. Moreover, we demonstrate the hardware implementation of a linear regression algorithm on h-BN memristor arrays.
more »
« less
- Award ID(s):
- 2001107
- PAR ID:
- 10381842
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj 2D Materials and Applications
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2397-7132
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Previous work that studied hexagonal boron nitride (h‐BN) memristor DC resistive‐switching characteristics is extended to include an experimental understanding of their dynamic behavior upon programming or synaptic weight update. The focus is on the temporal resistive switching response to driving stimulus (programming voltage pulses) effecting conductance updates during training in neural network crossbar implementations. Test arrays are fabricated at the wafer level, enabled by the transfer of CVD‐grown few‐layer (8 layer) or multi‐layer (18 layer) h‐BN films. A comprehensive study of their temporal response under various conditions–voltage pulse amplitude, edge rate (pulse rise/fall times), and temperature–provides new insights into the resistive switching process toward optimized devices and improvements in their implementation of artificial neural networks. The h‐BN memristors can achieve multi‐state operation through ultrafast pulsed switching (< 25 ns) with high energy efficiency (≈10 pJ pulse−1).more » « less
-
Abstract Non‐volatile resistive switching (NVRS) is a widely available effect in transitional metal oxides, colloquially known as memristors, and of broad interest for memory technology and neuromorphic computing. Until recently, NVRS was not known in other transitional metal dichalcogenides (TMDs), an important material class owing to their atomic thinness enabling the ultimate dimensional scaling. Here, various monolayer or few‐layer 2D materials are presented in the conventional vertical structure that exhibit NVRS, including TMDs (MX2, M=transitional metal, e.g., Mo, W, Re, Sn, or Pt; X=chalcogen, e.g., S, Se, or Te), TMD heterostructure (WS2/MoS2), and an atomically thin insulator (h‐BN). These results indicate the universality of the phenomenon in 2D non‐conductive materials, and feature low switching voltage, large ON/OFF ratio, and forming‐free characteristic. A dissociation–diffusion–adsorption model is proposed, attributing the enhanced conductance to metal atoms/ions adsorption into intrinsic vacancies, a conductive‐point mechanism supported by first‐principle calculations and scanning tunneling microscopy characterizations. The results motivate further research in the understanding and applications of defects in 2D materials.more » « less
-
Abstract Spiking neural network (SNN) in future neuromorphic architectures requires hardware devices to be not only capable of emulating fundamental functionalities of biological synapse such as spike-timing dependent plasticity (STDP) and spike-rate dependent plasticity (SRDP), but also biodegradable to address current ecological challenges of electronic waste. Among different device technologies and materials, memristive synaptic devices based on natural organic materials have emerged as the favourable candidate to meet these demands. The metal–insulator-metal structure is analogous to biological synapse with low power consumption, fast switching speed and simulation of synaptic plasticity, while natural organic materials are water soluble, renewable and environmental friendly. In this study, the potential of a natural organic material—honey-based memristor for SNNs was demonstrated. The device exhibited forming-free bipolar resistive switching, a high switching speed of 100 ns set time and 500 ns reset time, STDP and SRDP learning behaviours, and dissolving in water. The intuitive conduction models for STDP and SRDP were proposed. These results testified that honey-based memristive synaptic devices are promising for SNN implementation in green electronics and biodegradable neuromorphic systems.more » « less
-
Abstract 2D materials have attracted much interest over the past decade in nanoelectronics. However, it was believed that the atomically thin layered materials are not able to show memristive effect in vertically stacked structure, until the recent discovery of monolayer transition metal dichalcogenide (TMD) atomristors, overcoming the scaling limit to sub‐nanometer. Herein, the nonvolatile resistance switching (NVRS) phenomenon in monolayer hexagonal boron nitride (h‐BN), a typical 2D insulator, is reported. The h‐BN atomristors are studied using different electrodes and structures, featuring forming‐free switching in both unipolar and bipolar operations, with large on/off ratio (up to 107). Moreover, fast switching speed (<15 ns) is demonstrated via pulse operation. Compared with monolayer TMDs, the one‐atom‐thin h‐BN sheet reduces the vertical scaling to ≈0.33 nm, representing a record thickness for memory materials. Simulation results based on ab‐initio method reveal that substitution of metal ions into h‐BN vacancies during electrical switching is a likely mechanism. The existence of NVRS in monolayer h‐BN indicates fruitful interactions between defects, metal ions and interfaces, and can advance emerging applications on ultrathin flexible memory, printed electronics, neuromorphic computing, and radio frequency switches.more » « less