skip to main content


Title: Control of low-frequency guided elastic wave modes in a hollow pipe using a meta-surface
A locally resonant meta-surface for preferential excitation of a guided mode in a hollow pipe can improve ultrasonic guided wave inspection of pipelines. The proposed meta-surface comprises a periodic arrangement of bonded prismatic rod-like resonators in the circumferential and axial directions of the pipe. We demonstrate the presence of bandgaps for the low-frequency axisymmetric longitudinal modes L(0,1) and L(0,2) and the torsional mode T(0,1). The generated bandgaps can be used to filter the higher harmonics associated with the system nonlinearity to improve nonlinear ultrasonic measurements on pipes. These bandgaps exist even for the non-axisymmetric flexural modes but with their hybridized dispersion curves exhibiting mode-coupling for higher circumferential orders. Moreover, a “partial” bandgap is obtained where preferential transmission of the L(0,2) mode over L(0,1) is possible. We discuss the potential advantages of this partial bandgap to improve pipeline inspections using the L(0,2) mode. Time-domain finite element analyses are used to validate the presence of these bandgaps under radial, circumferential, and axial excitation that mimics the excitation using a ring of piezoelectric transducers. Finally, we discuss the influence of resonator spacing, filling fraction, and the number of resonator rings on the bandgaps for an informed meta-surface design.  more » « less
Award ID(s):
1934527
NSF-PAR ID:
10381910
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
AIP Advances
Volume:
12
Issue:
8
ISSN:
2158-3226
Page Range / eLocation ID:
085027
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work is centered on high-fidelity modeling, analysis, and rigorous experiments of vibrations and guided (Lamb) waves in a human skull in two connected tracks: (1) layered modeling of the cranial bone structure (with cortical tables and diploë) and its vibration-based elastic parameter identification (and validation); (2) transcranial leaky Lamb wave characterization experiments and radiation analyses using the identified elastic parameters in a layered semi analytical finite element framework, followed by time transient simulations that consider the inner porosity as is. In the first track, non-contact vibration experiments are conducted to extract the first handful of modal frequencies in the auditory frequency regime, along with the associated damping ratios and mode shapes, of dry cranial bone segments extracted from the parietal and frontal regions of a human skull. Numerical models of the bone segments are built with a novel image reconstruction scheme that employs microcomputed tomographic scans to build a layered bone geometry with separate homogenized domains for the cortical tables and the diploë. These numerical models and the experimental modal frequencies are then used in an iterative parameter identification scheme that yields the cortical and diploic isotropic elastic moduli of each domain, whereas the corresponding densities are estimated using the total experimental mass and layer mass ratios obtained from the scans. With the identified elastic parameters, the average error between experimental and numerical modal frequencies is less than 1.5% and the modal assurance criterion values for most modes are above 0.90. Furthermore, the extracted parameters are in the range of the results reported in the literature. In the second track, the focus is placed on the subject of leaky Lamb waves, which has received growing attention as a promising alternative to conventional ultrasound techniques for transcranial transmission, especially to access the brain periphery. Experiments are conducted on the same cranial bone segment set for leaky Lamb wave excitation and radiation characterization. The degassed skull bone segments are used in submersed experiments with an ultrasonic transducer and needle hydrophone setup for radiation pressure field scanning. Elastic parameters obtained from the first track are used in guided wave dispersion simulations, and the radiation angles are accurately predicted using the aforementioned layered model in the presence of fluid loading. The dominant radiation angles are shown to correspond to guided wave modes with low attenuation and a significant out-of-plane polarization. The experimental radiation spectra are finally compared against those obtained from time transient finite element simulations that leverage geometric models reconstructed from microcomputed tomographic scans. 
    more » « less
  2. Abstract

    The bulk-boundary correspondence (b-bc) principle states that the presence and number ofevanescentbandgap modes at an interface between two periodic media depend on the topological invariants (Chern numbers in 2D or Zak phases in 1D) ofpropagatingmodesat completely different frequenciesin all Bloch bands below that bandgap. The objective of this letter is to explain, on physical grounds, this connection between modes with completely different characteristics. We assume periodic lossless 1D structures and lattice cells with mirror symmetry; in this case the Zak phase is unambiguously defined. The letter presents a systematic study of the behavior of electromagnetic Bloch impedance, defined as the ratio of electrical and magnetic fields in a Bloch wave at the boundary of a lattice cell. The impedance-centric view confers transparent physical meaning on the bulk-boundary correspondence principle. Borrowing from the semiconductor terminology, we classify the bandgaps asp- andn-type at the Γ andXpoints, depending on whether the Bloch impedance has a pole (p) or a null (n) at the bottom of that gap. An interface mode exists only forpn-junctions per our definition. We expect these ideas to be extendable to problems in higher dimensions, with a variety of emerging applications.

     
    more » « less
  3. Germanium alloyed with α-tin (GeSn) transitions to a direct bandgap semiconductor of significance for optoelectronics. It is essential to localize the carriers within the active region for improving the quantum efficiency in a GeSn based laser. In this work, epitaxial GeSn heterostructure material systems were analyzed to determine the band offsets for carrier confinement: (i) a 0.53% compressively strained Ge 0.97 Sn 0.03 /AlAs; (ii) a 0.81% compressively strained Ge 0.94 Sn 0.06 /Ge; and (iii) a lattice matched Ge 0.94 Sn 0.06 /In 0.12 Al 0.88 As. The phonon modes in GeSn alloys were studied using Raman spectroscopy as a function of Sn composition, that showed Sn induced red shifts in wavenumbers of the Ge–Ge longitudinal optical phonon mode peaks. The material parameter b representing strain contribution to Raman shifts of a Ge 0.94 Sn 0.06 alloy was determined as b = 314.81 ± 14 cm −1 . Low temperature photoluminescence measurements were performed at 79 K to determine direct and indirect energy bandgaps of E g,Γ = 0.72 eV and E g,L = 0.66 eV for 0.81% compressively strained Ge 0.94 Sn 0.06 , and E g,Γ = 0.73 eV and E g,L = 0.68 eV for lattice matched Ge 0.94 Sn 0.06 epilayers. Chemical effects of Sn atomic species were analyzed using X-ray photoelectron spectroscopy (XPS), revealing a shift in Ge 3d core level (CL) spectra towards the lower binding energy affecting the bonding environment. Large valence band offset of Δ E V = 0.91 ± 0.1 eV and conduction band offset of Δ E C,Γ–X = 0.64 ± 0.1 eV were determined from the Ge 0.94 Sn 0.06 /In 0.12 Al 0.88 As heterostructure using CL spectra by XPS measurements. The evaluated band offset was found to be of type-I configuration, needed for carrier confinement in a laser. In addition, these band offset values were compared with the first-principles-based calculated Ge/InAlAs band alignment, and it was found to have arsenic up-diffusion limited to 1 monolayer of epitaxial GeSn overlayer, ruling out the possibility of defects induced modification of band alignment. Furthermore, this lattice matched GeSn/InAlAs heterostructure band offset values were significantly higher than GeSn grown on group IV buffer/substrates. Therefore, a lattice matched GeSn/InAlAs material system has large band offsets offering superior carrier confinement to realize a highly efficient GeSn based photonic device. 
    more » « less
  4. Context. The possible existence of warm ( T eff  ∼ 19 000 K) pulsating DA white dwarf (WD) stars, hotter than ZZ Ceti stars, was predicted in theoretical studies more than 30 yr ago. These studies reported the occurrence of g -mode pulsational instabilities due to the κ mechanism acting in the partial ionization zone of He below the H envelope in models of DA WDs with very thin H envelopes ( M H / M ⋆  ≲ 10 −10 ). However, to date, no pulsating warm DA WD has been discovered, despite the varied theoretical and observational evidence suggesting that a fraction of WDs should be formed with a range of very low H content. Aims. We re-examine the pulsational predictions for such WDs on the basis of new full evolutionary sequences. We analyze all the warm DAs observed by the TESS satellite up to Sector 9 in order to search for the possible pulsational signal. Methods. We computed WD evolutionary sequences of masses 0.58 and 0.80 M ⊙ with H content in the range −14.5 ≲ log( M H / M ⋆ )≲ − 10, appropriate for the study of pulsational instability of warm DA WDs. Initial models were extracted from progenitors that were evolved through very late thermal pulses on the early cooling branch. We use LPCODE stellar code into which we have incorporated a new full-implicit treatment of time-dependent element diffusion to precisely model the H–He transition zone in evolving WD models with very low H content. The nonadiabatic pulsations of our warm DA WD models were computed in the effective temperature range of 30 000 − 10 000 K, focusing on ℓ = 1 g modes with periods in the range 50 − 1500 s. Results. We find that traces of H surviving the very late thermal pulse float to the surface, eventually forming thin, growing pure H envelopes and rather extended H–He transition zones. We find that such extended transition zones inhibit the excitation of g modes due to partial ionization of He below the H envelope. Only in the cases where the H–He transition is assumed much more abrupt than predicted by diffusion do models exhibit pulsational instability. In this case, instabilities are found only in WD models with H envelopes in the range of −14.5 ≲ log( M H / M ⋆ )≲ − 10 and at effective temperatures higher than those typical for ZZ Ceti stars, in agreement with previous studies. None of the 36 warm DAs observed so far by TESS satellite are found to pulsate. Conclusions. Our study suggests that the nondetection of pulsating warm DAs, if WDs with very thin H envelopes do exist, could be attributed to the presence of a smooth and extended H–He transition zone. This could be considered as indirect proof that element diffusion indeed operates in the interior of WDs. 
    more » « less
  5. Abstract

    Zinc oxide (ZnO) nanowires are widely studied for use in ultraviolet optoelectronic devices, such as nanolasers and sensors. Nanowires (NWs) with an MgO shell exhibit enhanced band‐edge photoluminescence (PL), a result previously attributed to passivation of ZnO defects. However, we find that processing the ZnO NWs under low oxygen partial pressure leads to an MgO‐thickness‐dependent PL enhancement owing to the formation of optical cavity modes. Conversely, processing under higher oxygen partial pressure leads to NWs that support neither mode formation nor band‐edge PL enhancement. High‐resolution electron microscopy and density‐functional calculations implicate the ZnOm‐plane surface morphology as the key determinant of core‐shell structure and cavity‐mode optics. A ZnO surface with atomic steps along them‐plane in thec‐axis direction stimulates the growth of a smooth MgO shell that supports guided‐wave optical modes and enhanced UV PL. On the other hand, a smoother ZnO surface leads to nucleation of a rough cladding layer which supports neither enhanced UV PL nor optical cavity modes. Finite‐element analysis shows a clear correlation between allowed Fabry‐Perot and whispering gallery modes and enhanced UV‐PL. These results point the way to fabricating ZnO/MgO core‐shell nanowires for more efficient UV nanolasers, scintillators, and sensors.

     
    more » « less