skip to main content


Title: Design of resonant elastodynamic metasurfaces to control S 0 Lamb waves using topology optimization
Control of guided waves has applications across length scales ranging from surface acoustic wave devices to seismic barriers. Resonant elastodynamic metasurfaces present attractive means of guided wave control by generating frequency stop-bandgaps using local resonators. This work addresses the systematic design of these resonators using a density-based topology optimization formulated as an eigenfrequency matching problem that tailors antiresonance eigenfrequencies. The effectiveness of our systematic design methodology is presented in a case study, where topologically optimized resonators are shown to prevent the propagation of the S 0 wave mode in an aluminum plate.  more » « less
Award ID(s):
1934527
PAR ID:
10381911
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
JASA Express Letters
Volume:
2
Issue:
11
ISSN:
2691-1191
Page Range / eLocation ID:
115601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Controlling and manipulating elastic/acoustic waves via artificially structured metamaterials, phononic crystals, and metasurfaces have gained an increasing research interest in the last decades. Unlike others, a metasurface is a single layer in the host medium with an array of subwavelength-scaled patterns introducing an abrupt phase shift in the wave propagation path. In this study, an elastic metasurface composed of an array of slender beam resonators is proposed to control the elastic wavefront of low-frequency flexural waves. The phase gradient based on Snell’s law is achieved by tailoring the thickness of thin beam resonators connecting two elastic host media. Through analytical and numerical models, the phase-modulated metasurfaces are designed and verified to accomplish three dynamic wave functions, namely, deflection, non-paraxial propagation, and focusing. An oblique incident wave is also demonstrated to show the versatility of the proposed design for focusing of wave energy incident from multiple directions. Experimentally measured focusing metasurface has nearly three times wave amplification at the designed focal point which validates the design and theoretical models. Furthermore, the focusing metasurface is exploited for low-frequency energy harvesting and the piezoelectric harvester is improved by almost nine times in terms of the harvested power output as compared to the baseline harvester on the pure plate without metasurface. 
    more » « less
  2. An array of surface-mounted prismatic resonators in the path of Rayleigh wave propagation generates two distinct types of surface-wave bandgaps: longitudinal and flexural-resonance bandgaps, resulting from the hybridization of the Rayleigh wave with the longitudinal and flexural resonances of the resonators, respectively. Longitudinal-resonance bandgaps are broad with asymmetric transmission drops, whereas flexural-resonance bandgaps are narrow with nearly symmetric transmission drops. In this paper, we illuminate these observations by investigating the resonances and anti-resonances of the resonator. With an understanding of how the Rayleigh wave interacts with different boundary conditions, we investigate the clamping conditions imposed by prismatic resonators due to the resonator’s resonances and anti-resonances and interpret the resulting transmission spectra. We demonstrate that, in the case of a single resonator, only the resonator’s longitudinal and flexural resonances are responsible for suppressing Rayleigh waves. In contrast, for a resonator array, both the resonances and the anti-resonances of the resonators contribute to the formation of the longitudinal-resonance bandgaps, unlike the flexural-resonance bandgaps where only the flexural resonances play a role. We also provide an explanation for the observed asymmetry in the transmission drop within the longitudinal-resonance bandgaps by assessing the clamping conditions imposed by the resonators. Finally, we evaluate the transmission characteristics of resonator arrays at the anti-resonance frequencies by varying a few key geometric parameters of the unit cell. These findings provide the conceptual understanding required to design optimized resonators based on matching anti-resonance frequencies with the incident Rayleigh wave frequency in order to achieve enhanced Rayleigh wave suppression. 
    more » « less
  3. A locally resonant meta-surface for preferential excitation of a guided mode in a hollow pipe can improve ultrasonic guided wave inspection of pipelines. The proposed meta-surface comprises a periodic arrangement of bonded prismatic rod-like resonators in the circumferential and axial directions of the pipe. We demonstrate the presence of bandgaps for the low-frequency axisymmetric longitudinal modes L(0,1) and L(0,2) and the torsional mode T(0,1). The generated bandgaps can be used to filter the higher harmonics associated with the system nonlinearity to improve nonlinear ultrasonic measurements on pipes. These bandgaps exist even for the non-axisymmetric flexural modes but with their hybridized dispersion curves exhibiting mode-coupling for higher circumferential orders. Moreover, a “partial” bandgap is obtained where preferential transmission of the L(0,2) mode over L(0,1) is possible. We discuss the potential advantages of this partial bandgap to improve pipeline inspections using the L(0,2) mode. Time-domain finite element analyses are used to validate the presence of these bandgaps under radial, circumferential, and axial excitation that mimics the excitation using a ring of piezoelectric transducers. Finally, we discuss the influence of resonator spacing, filling fraction, and the number of resonator rings on the bandgaps for an informed meta-surface design. 
    more » « less
  4. Abstract Optical resonators are structures that utilize wave interference and feedback to confine light in all three dimensions. Depending on the feedback mechanism, resonators can support either standing- or traveling-wave modes. Over the years, the distinction between these two different types of modes has become so prevalent that nowadays it is one of the main characteristics for classifying optical resonators. Here, we show that an intermediate link between these two rather different groups exists. In particular, we introduce a new class of photonic resonators that supports a hybrid optical mode, i.e. at one location along the resonator the electromagnetic fields associated with the mode feature a purely standing-wave pattern, while at a different location, the fields of the same mode represent a pure traveling wave. The proposed concept is general and can be implemented using chip-scale photonics as well as free-space optics. Moreover, it can be extended to other wave phenomena such as microwaves and acoustics. 
    more » « less
  5. For large or infinite metasurfaces, a design tech- nique for a dense array of subwavelength resonators on an irregular grid is presented. For a given incident wave, the desired induced dipole moment distribution determines the local electric field that excites individual meta-atoms. The interaction field that accounts for mutual coupling is evaluated via a combination of discrete coupling from nearby resonators and continuous sheet current coupling from far-separated resonators. Meta-atoms placed on an irregular grid can be treated, greatly enhancing the flexibility in surface profile in practical conformal metasurfaces. 
    more » « less