skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design of resonant elastodynamic metasurfaces to control S 0 Lamb waves using topology optimization
Control of guided waves has applications across length scales ranging from surface acoustic wave devices to seismic barriers. Resonant elastodynamic metasurfaces present attractive means of guided wave control by generating frequency stop-bandgaps using local resonators. This work addresses the systematic design of these resonators using a density-based topology optimization formulated as an eigenfrequency matching problem that tailors antiresonance eigenfrequencies. The effectiveness of our systematic design methodology is presented in a case study, where topologically optimized resonators are shown to prevent the propagation of the S 0 wave mode in an aluminum plate.  more » « less
Award ID(s):
1934527
PAR ID:
10381911
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
JASA Express Letters
Volume:
2
Issue:
11
ISSN:
2691-1191
Page Range / eLocation ID:
115601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Elastodynamic metasurfaces composed of surface-mounted resonators show great promise for guided wave control in diverse applications, e.g., seismic and vibration isolation, nondestructive evaluation, or surface acoustic wave devices. In this work, we revisit the well-studied problem of “rod-shaped” resonators coupled to a plate to reveal the relationship between the resonator's resonances and antiresonances obtained under unidirectional harmonic excitation, and the resultant frequency bandgap for S0 Lamb mode propagation once a metasurface is arranged. This relationship is shown to hold true even for non-prismatic resonators, such as those presented in our recent studies, in which we established a systematic resonator design methodology using topology optimization by matching a single resonator's antiresonance with a predefined target frequency. Our present study suggests that considering the waveguide (plate) during the resonator design is not essential and encourages a feasible resonator design approach to achieve wide bandgaps just by customizing a single resonator's resonances and antiresonances. We present a topology optimization design methodology for resonators that drive resonances away from antiresonances, i.e., a resonance gap enhancement, yielding a broadband S0 mode bandgap while ensuring the desired bandgap formation by matching antiresonances with a target frequency. The transmission loss of metasurfaces composed with topology-optimized resonators is numerically verified, confirming the generation of wider bandgaps compared to resonators designed without resonance gap enhancement and broadening the applicability of locally resonant metasurfaces. 
    more » « less
  2. Locally resonant elastodynamic metasurfaces for suppressing surface waves have gained popularity in recent years, especially because of their potential in low-frequency applications such as seismic barriers. Their design strategy typically involves tailoring geometrical features of local resonators to attain a desired frequency bandgap through extensive dispersion analyses. In this paper, a systematic design methodology is presented to conceive these local resonators using topology optimization, where frequency bandgaps develop by matching multiple antiresonances with predefined target frequencies. The design approach modifies an individual resonator's response to unidirectional harmonic excitations in the in-plane and out-of-plane directions, mimicking the elliptical motion of surface waves. Once an arrangement of optimized resonators composes a locally resonant metasurface, frequency bandgaps appear around the designed antiresonance frequencies. Numerical investigations analyze three case studies, showing that longitudinal-like and flexural-like antiresonances lead to nonoverlapping bandgaps unless both antiresonance modes are combined to generate a single and wider bandgap. Experimental data demonstrate good agreement with the numerical results, validating the proposed design methodology as an effective tool to realize locally resonant metasurfaces by matching multiple antiresonances such that bandgaps generated as a result of in-plane and out-of-plane surface wave motion combine into wider bandgaps. 
    more » « less
  3. Abstract Precise control over light polarization is critical for advancing technologies in telecommunications, quantum computing, and image sensing. However, existing methods for manipulating polarization around exceptional points (EPs) in non‐Hermitian systems have exclusively focused on circular polarization and work with reflected light. To address this limitation, a novel metasurface platform with high‐Q resonators is developed that enables tunable control of polarization exceptional points across arbitrary ellipticity for transmitted light. This design employs orthogonally polarized guided mode resonators in a two‐layer silicon metasurface, where careful tuning of the dipolar guided mode resonances (DGMRs) and layer spacing allows us to control the ellipticity of EPs. By leveraging high‐quality factor resonances, strong orthogonal mode coupling over distances up to a quarter wavelength is achieved. This platform exhibits omnipolarizer behavior and the corresponding phase singularity can imprint phase shifts from 0 to 2π with small perturbations in the geometry. This approach opens new possibilities for polarization control and programmable wavefront shaping, offering significant potential for next‐generation optical devices. 
    more » « less
  4. null (Ed.)
    Abstract Controlling and manipulating elastic/acoustic waves via artificially structured metamaterials, phononic crystals, and metasurfaces have gained an increasing research interest in the last decades. Unlike others, a metasurface is a single layer in the host medium with an array of subwavelength-scaled patterns introducing an abrupt phase shift in the wave propagation path. In this study, an elastic metasurface composed of an array of slender beam resonators is proposed to control the elastic wavefront of low-frequency flexural waves. The phase gradient based on Snell’s law is achieved by tailoring the thickness of thin beam resonators connecting two elastic host media. Through analytical and numerical models, the phase-modulated metasurfaces are designed and verified to accomplish three dynamic wave functions, namely, deflection, non-paraxial propagation, and focusing. An oblique incident wave is also demonstrated to show the versatility of the proposed design for focusing of wave energy incident from multiple directions. Experimentally measured focusing metasurface has nearly three times wave amplification at the designed focal point which validates the design and theoretical models. Furthermore, the focusing metasurface is exploited for low-frequency energy harvesting and the piezoelectric harvester is improved by almost nine times in terms of the harvested power output as compared to the baseline harvester on the pure plate without metasurface. 
    more » « less
  5. An array of surface-mounted prismatic resonators in the path of Rayleigh wave propagation generates two distinct types of surface-wave bandgaps: longitudinal and flexural-resonance bandgaps, resulting from the hybridization of the Rayleigh wave with the longitudinal and flexural resonances of the resonators, respectively. Longitudinal-resonance bandgaps are broad with asymmetric transmission drops, whereas flexural-resonance bandgaps are narrow with nearly symmetric transmission drops. In this paper, we illuminate these observations by investigating the resonances and anti-resonances of the resonator. With an understanding of how the Rayleigh wave interacts with different boundary conditions, we investigate the clamping conditions imposed by prismatic resonators due to the resonator’s resonances and anti-resonances and interpret the resulting transmission spectra. We demonstrate that, in the case of a single resonator, only the resonator’s longitudinal and flexural resonances are responsible for suppressing Rayleigh waves. In contrast, for a resonator array, both the resonances and the anti-resonances of the resonators contribute to the formation of the longitudinal-resonance bandgaps, unlike the flexural-resonance bandgaps where only the flexural resonances play a role. We also provide an explanation for the observed asymmetry in the transmission drop within the longitudinal-resonance bandgaps by assessing the clamping conditions imposed by the resonators. Finally, we evaluate the transmission characteristics of resonator arrays at the anti-resonance frequencies by varying a few key geometric parameters of the unit cell. These findings provide the conceptual understanding required to design optimized resonators based on matching anti-resonance frequencies with the incident Rayleigh wave frequency in order to achieve enhanced Rayleigh wave suppression. 
    more » « less