skip to main content


Title: Topology Optimization Design of Structures Based on Eigenfrequency Matching
Abstract

We demonstrate the design of resonating structures using a density-based topology optimization approach, which requires the eigenfrequencies to match a set of target values. To develop a solution, several optimization modules are implemented, including material interpolation models, penalization schemes, filters, analytical sensitivities, and a solver. Moreover, common challenges in topology optimization for dynamic systems and their solutions are discussed. In this study, the objective function is to minimize the error between the target and actual eigenfrequency values. The finite element method is used to compute the eigenfrequencies at each iteration. To solve the optimization problem, we use the sequential linear programming algorithm with move limits, enhanced by a filtering technique. Finally, we present a resonator design as a case study and analyze the design process with different optimization parameters.

 
more » « less
Award ID(s):
1934527
NSF-PAR ID:
10381915
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
47th Design Automation Conference (DAC)
Volume:
3B-2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this article, we present a design methodology for resonant structures exhibiting particular dynamic responses by combining an eigenfrequency matching approach and a harmonic analysis-informed eigenmode identification strategy. This systematic design methodology, based on topology optimization, introduces a novel computationally efficient approach for 3D dynamic problems requiring antiresonances at specific target frequencies subject to specific harmonic loads. The optimization’s objective function minimizes the error between target antiresonance frequencies and the actual structure’s antiresonance eigenfrequencies, while the harmonic analysis-informed identification strategy compares harmonic displacement responses against eigenvectors using a modal assurance criterion, therefore ensuring an accurate recognition and selection of appropriate antiresonance eigenmodes used during the optimization process. At the same time, this method effectively prevents well-known problems in topology optimization of eigenfrequencies such as localized eigenmodes in low-density regions, eigenmodes switching order, and repeated eigenfrequencies. Additionally, our proposed localized eigenmode identification approach completely removes the spurious eigenmodes from the optimization problem by analyzing the eigenvectors’ response in low-density regions compared to high-density regions. The topology optimization problem is formulated with a density-based parametrization and solved with a gradient-based sequential linear programming method, including material interpolation models and topological filters. Two case studies demonstrate that the proposed design methodology successfully generates antiresonances at the desired target frequency subject to different harmonic loads, design domain dimensions, mesh discretization, or material properties.

     
    more » « less
  2. Control of guided waves has applications across length scales ranging from surface acoustic wave devices to seismic barriers. Resonant elastodynamic metasurfaces present attractive means of guided wave control by generating frequency stop-bandgaps using local resonators. This work addresses the systematic design of these resonators using a density-based topology optimization formulated as an eigenfrequency matching problem that tailors antiresonance eigenfrequencies. The effectiveness of our systematic design methodology is presented in a case study, where topologically optimized resonators are shown to prevent the propagation of the S 0 wave mode in an aluminum plate. 
    more » « less
  3. Abstract

    Topology optimization has been proved to be an automatic, efficient and powerful tool for structural designs. In recent years, the focus of structural topology optimization has evolved from mono-scale, single material structural designs to hierarchical multimaterial structural designs. In this research, the multi-material structural design is carried out in a concurrent parametric level set framework so that the structural topologies in the macroscale and the corresponding material properties in mesoscale can be optimized simultaneously. The constructed cardinal basis function (CBF) is utilized to parameterize the level set function. With CBF, the upper and lower bounds of the design variables can be identified explicitly, compared with the trial and error approach when the radial basis function (RBF) is used. In the macroscale, the ‘color’ level set is employed to model the multiple material phases, where different materials are represented using combined level set functions like mixing colors from primary colors. At the end of this optimization, the optimal material properties for different constructing materials will be identified. By using those optimal values as targets, a second structural topology optimization is carried out to determine the exact mesoscale metamaterial structural layout. In both the macroscale and the mesoscale structural topology optimization, an energy functional is utilized to regularize the level set function to be a distance-regularized level set function, where the level set function is maintained as a signed distance function along the design boundary and kept flat elsewhere. The signed distance slopes can ensure a steady and accurate material property interpolation from the level set model to the physical model. The flat surfaces can make it easier for the level set function to penetrate its zero level to create new holes. After obtaining both the macroscale structural layouts and the mesoscale metamaterial layouts, the hierarchical multimaterial structure is finalized via a local-shape-preserving conformal mapping to preserve the designed material properties. Unlike the conventional conformal mapping using the Ricci flow method where only four control points are utilized, in this research, a multi-control-point conformal mapping is utilized to be more flexible and adaptive in handling complex geometries. The conformally mapped multi-material hierarchical structure models can be directly used for additive manufacturing, concluding the entire process of designing, mapping, and manufacturing.

     
    more » « less
  4. Abstract

    In recent years, machine learning (ML) techniques are seen to be promising tools to discover and design novel materials. However, the lack of robust inverse design approaches to identify promising candidate materials without exploring the entire design space causes a fundamental bottleneck. A general‐purpose inverse design approach is presented using generative inverse design networks. This ML‐based inverse design approach uses backpropagation to calculate the analytical gradients of an objective function with respect to design variables. This inverse design approach is capable of overcoming local minima traps by using backpropagation to provide rapid calculations of gradient information and running millions of optimizations with different initial values. Furthermore, an active learning strategy is adopted in the inverse design approach to improve the performance of candidate materials and reduce the amount of training data needed to do so. Compared to passive learning, the active learning strategy is capable of generating better designs and reducing the amount of training data by at least an order‐of‐magnitude in the case study on composite materials. The inverse design approach is compared with conventional gradient‐based topology optimization and gradient‐free genetic algorithms and the pros and cons of each method are discussed when applied to materials discovery and design problems.

     
    more » « less
  5. Generators are considered as the core application of electromagnetic machines, which require high-cost rare-earth-based permanent magnets. The development of generators is moving toward high efficiency and increased environmental friendliness. Minimizing the use of rare earth materials such as magnetic materials under the premise of machine performance emerges as a challenging task. Topology optimization has been promisingly applied to many application areas as a powerful generative design tool. It can identify the optimal distribution of magnetic material in the defined design space. This paper employs the level-set-based topology optimization method to design the permanent magnet for generators. The machine under study is a simplified 2D outer rotor direct-drive wind power generator. The dynamic and static models of this generator are studied, and the magnetostatic system is adopted to conduct the topology optimization. The optimization goals in this study mainly focused on two aspects, namely the maximization of the system magnetic energy and the generation of a target magnetic field in the region of the air gap. The continuum shape sensitivity analysis is derived by using the material time derivative, the Lagrange multiplier method, and the adjoint variable method. Two numerical examples are investigated, and the effectiveness of the proposed design framework is validated by comparing the performance of the original design against the optimized design. 
    more » « less