skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eye-tracking as a proxy for coherence and complexity of texts
Reading is a complex cognitive process that involves primary oculomotor function and high-level activities like attention focus and language processing. When we read, our eyes move by primary physiological functions while responding to language-processing demands. In fact, the eyes perform discontinuous twofold movements, namely, successive long jumps (saccades) interposed by small steps (fixations) in which the gaze “scans” confined locations. It is only through the fixations that information is effectively captured for brain processing. Since individuals can express similar as well as entirely different opinions about a given text, it is therefore expected that the form, content and style of a text could induce different eye-movement patterns among people. A question that naturally arises is whether these individuals’ behaviours are correlated, so that eye-tracking while reading can be used as a proxy for text subjective properties. Here we perform a set of eye-tracking experiments with a group of individuals reading different types of texts, including children stories, random word generated texts and excerpts from literature work. In parallel, an extensive Internet survey was conducted for categorizing these texts in terms of their complexity and coherence, considering a large number of individuals selected according to different ages, gender and levels of education. The computational analysis of the fixation maps obtained from the gaze trajectories of the subjects for a given text reveals that the average “magnetization” of the fixation configurations correlates strongly with their complexity observed in the survey. Moreover, we perform a thermodynamic analysis using the Maximum-Entropy Model and find that coherent texts were closer to their corresponding “critical points” than non-coherent ones, as computed from the Pairwise Maximum-Entropy method, suggesting that different texts may induce distinct cohesive reading activities.  more » « less
Award ID(s):
1945909
PAR ID:
10381958
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Ribeiro, Haroldo V.
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
12
ISSN:
1932-6203
Page Range / eLocation ID:
e0260236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study used eye-tracking to examine whether extraneous illustration details—a common design in beginning reader storybooks—promote attentional competition and hinder learning. The study used a within-subject design with first- and second-grade children. Children (n = 60) read a story in a commercially available Standard condition and in a Streamlined condition, in which extraneous illustrations were removed while an eye-tracker recorded children’s gaze shifts away from the text, fixations to extraneous illustrations, and fixations to relevant illustrations. Extraneous illustrations promoted attentional competition and hindered reading comprehension: children made more gaze shifts away from text in the Standard compared to the Streamlined condition, and reading comprehension was significantly higher in the Streamlined condition compared to the Standard condition. Importantly, fixations toward extraneous details accounted for the unique variance in reading comprehension controlling for reading proficiency and attending to relevant illustrations. Furthermore, a follow-up control experiment (n = 60) revealed that these effects did not solely stem from enhanced text saliency in the Streamlined condition and reproduced the finding of a negative relationship between fixations to extraneous details and reading comprehension. This study provides evidence that the design of reading materials can be optimized to promote literacy development in young children. 
    more » « less
  2. null (Ed.)
    Studies of eye movements during source code reading have supported the idea that reading source code differs fundamentally from reading natural text. The paper analyzed an existing data set of natural language and source code eye movement data using the E-Z reader model of eye movement control. The results show that the E-Z reader model can be used with natural text and with source code where it provides good predictions of eye movement duration. This result is confirmed by comparing model predictions to eye-movement data from this experiment and calculating the correlation score for each metric. Finally, it was found that gaze duration is influenced by token frequency in code and in natural text. The frequency effect is less pronounced on first fixation duration and single fixation duration. An eye movement control model for source code reading may open the door for tools in education and the industry to enhance program comprehension. 
    more » « less
  3. What can eye movements reveal about reading, a complex skill ubiquitous in everyday life? Research suggests that gaze can measure short-term comprehension for facts, but it is unknown whether it can measure long-term, deep comprehension. We tracked gaze while 147 participants read long, connected, in-formative texts and completed assessments of rote (factual) and inference (connecting ideas) comprehension while reading a text, after reading a text, after reading five texts, and after a seven-day delay. Gaze-based student-independent computa-tional models predicted both immediate and long-term rote and inference comprehension with moderate accuracies. Surprising-ly, the models were most accurate for comprehension assessed after reading all texts and predicted comprehension even after a week-long delay. This shows that eye movements can provide a lens into the cognitive processes underlying reading compre-hension, including inference formation, and the consolidation of information into long-term memory, which has implications for intelligent student interfaces that can automatically detect and repair comprehension in real-time. 
    more » « less
  4. Abstract We know that reading involves coordination between textual characteristics and visual attention, but research linking eye movements during reading and comprehension assessed after reading is surprisingly limited, especially for reading long connected texts. We tested two competing possibilities: (a) the weak association hypothesis: Links between eye movements and comprehension are weak and short‐lived, versus (b) the strong association hypothesis: The two are robustly linked, even after a delay. Using a predictive modeling approach, we trained regression models to predict comprehension scores from global eye movement features, using participant‐level cross‐validation to ensure that the models generalize across participants. We used data from three studies in which readers (Ns = 104, 130, 147) answered multiple‐choice comprehension questions ~30 min after reading a 6,500‐word text, or after reading up to eight 1,000‐word texts. The models generated accurate predictions of participants' text comprehension scores (correlations between observed and predicted comprehension: 0.384, 0.362, 0.372,ps < .001), in line with the strong association hypothesis. We found that making more, but shorter fixations, consistently predicted comprehension across all studies. Furthermore, models trained on one study's data could successfully predict comprehension on the others, suggesting generalizability across studies. Collectively, these findings suggest that there is a robust link between eye movements and subsequent comprehension of a long connected text, thereby connecting theories of low‐level eye movements with those of higher order text processing during reading. 
    more » « less
  5. Human-robot collaboration systems benefit from recognizing people’s intentions. This capability is especially useful for collaborative manipulation applications, in which users operate robot arms to manipulate objects. For collaborative manipulation, systems can determine users’ intentions by tracking eye gaze and identifying gaze fixations on particular objects in the scene (i.e., semantic gaze labeling). Translating 2D fixation locations (from eye trackers) into 3D fixation locations (in the real world) is a technical challenge. One approach is to assign each fixation to the object closest to it. However, calibration drift, head motion, and the extra dimension required for real-world interactions make this position matching approach inaccurate. In this work, we introduce velocity features that compare the relative motion between subsequent gaze fixations and a finite set of known points and assign fixation position to one of those known points. We validate our approach on synthetic data to demonstrate that classifying using velocity features is more robust than a position matching approach. In addition, we show that a classifier using velocity features improves semantic labeling on a real-world dataset of human-robot assistive manipulation interactions. 
    more » « less