skip to main content


Title: SMART Silly Putty: Stretchable, Malleable, Adherable, Reusable, and Tear‐Resistible Hydrogels
Abstract

Cell engineering, soft robotics, and wearable electronics often desire soft materials that are easy to deform, self‐heal readily, and can relax stress rapidly. Hydrogels, a type of hydrophilic networks, are such kind of materials that can be made responsive to environmental stimuli. However, conventional hydrogels often suffer from poor stretchability and repairability. Here, hydrogels consisting of boronic ester dynamic covalent bonds in a double network of poly(vinyl alcohol)/boric acid and chitosan are synthesized, which demonstrate extreme stretchability (up to 310 times the original length), instant self‐healing (within 5 s), and reusability and inherent adhesion. Their instant stress relaxation stems from a low activation energy of the boronic ester bond exchange (≤20 kJ mol−1) and contributes to the extreme stretchability and self‐healing behaviors. Various water‐dispersible additives can be readily incorporated in the hydrogels via hand kneading for potential applications such as soft electronics, bio‐signal sensing, and soft artificial joints.

 
more » « less
Award ID(s):
1720530
PAR ID:
10381981
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
19
Issue:
6
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An ongoing challenge in soft materials is to develop networks with high mechanical robustness while showing complete self-healing and stress relaxation. In this study we develop triple network (TN) materials with three different polymers with distinct dynamic linkers (Diels–Alder, boronic acid-ester and hydrogen bonding). TN materials exhibit significant improvement of strength, stability and excellent self-healing properties simultaneously compared to their analogous double networks (DNs). All the TNs (TN-FMA 5%, 7% and 9%) show higher tensile strength over all DNs. In addition, TN-FMA (9%) demonstrates an excellent fracture energy over 20 000 J m −2 , 750% elongation and fast stress relaxation. This highlights how dynamic bonding multiplicity and network structure can play a major role in improving the quality of dynamic materials. 
    more » « less
  2. Abstract

    This review discusses methods, challenges, and opportunities for direct‐write and 3D printing of low melting point, gallium‐based liquid metal alloys at room temperature. Alloys of gallium exhibit high conductivity and high stretchability making them well suited for use in soft circuitry for stretchable electronics and soft robotics. In addition, the liquid nature of the metal enables entirely new ways to pattern metals at room temperature; herein, the focus is placed on additive printing via nozzle‐based methods. Room temperature printing of liquid metals enables rapid fabrication of complex geometries (with dimensions as small as 10 µm) on a wide range of materials, such as polymers. These processes can be used to make metallic conductors for devices with self‐healing capabilities, soft/stretchable electrodes, and sensors.

     
    more » « less
  3. Abstract

    Liquid metal (LM) composites, which consist of LM droplets dispersed in highly deformable elastomers, have recently gained interest as a multifunctional material for soft robotics and electronics. The incorporation of LM into elastic solids allows for unique combinations of material properties such as high stretchability with thermal and electrical conductivity comparable to metals. However, it is currently a challenge to incorporate LM composites into integrated systems consisting of diverse materials and components due to a lack of adhesion control. Here, a chemical anchoring methodology to increase adhesion of LM composites to diverse substrates is presented. The fracture energy increases up to 100× relative to untreated surfaces, with values reaching up to 7800 J m−2. Furthermore, the fracture energy, tensile modulus, and thermal conductivity can be tuned together by controlling the microstructure of LM composites. Finally, the bonding technique is used to integrate LM composites with functional electronic components without encapsulation or clamping, allowing for extreme deformations while maintaining exceptional thermal and electrical conductivity. These findings can accelerate the adoption of LM composites into complex soft robotic and electronic systems where strong, reliable bonding between diverse materials and components is required.

     
    more » « less
  4. Abstract

    The dissimilarity of material composition in existing stretchable electronics and biological organisms is a key bottleneck, still yet to be resolved, toward seamless integration between stretchable electronics and biological species. For instance, human or animal tissues and skins are fully made out of soft polymer species, while existing stretchable electronics are composed of rigid inorganic materials, either purely or partially. Soft stretchable electronics fully made out of polymeric materials with intrinsic softness and stretchability are sought after and therefore proposed to address this technical challenge. Here, rubbery electronics and sensors fully made out of stretchable polymeric materials including all‐polymer rubbery transistors, sensors, and sensory skin, which have similar material composition to biology, are reported. The fabricated all‐polymer rubbery transistors exhibit field‐effect mobility of 1.11 cm2V‐1s‐1and retain their transistor performance even under mechanical stretch of 30%. In addition, all‐polymer rubbery strain and temperature sensors are demonstrated with high gauge factor and good temperature sensing capability. Based on these all‐polymer rubbery electronics, an active‐matrix multiplexed sensory skin on a robotic hand is demonstrated to illustrate one of the applications.

     
    more » « less
  5. Zwitterionic hydrogels, as highly hydrated and soft materials, have been considered as promising materials for wound dressing, due to their unique antifouling and mechanical properties. While the viscoelasticity and softness of zwitterionic hydrogels are hypothetically essential for creating adaptive cellular niches, the underlying mechanically regulated wound healing mechanism still remains elusive. To test this hypothesis, we fabricated zwitterionic poly(sulfobetaine methacrylate) (polySBMA) hydrogels with different elastic moduli prepared at different crosslinker contents, and then applied the hydrogels to full-thickness cutaneous wounds in mice. In vivo wound healing studies compared the mechanical cue-induced effects of soft and stiff polySBMA hydrogels on wound closure rates, granulation tissue formation and collagen deposition. Collective results showed that the softer and more viscoelastic hydrogels facilitated cell proliferation, granulation formation, collagen aggregation, and chondrogenic ECM deposition. Such high wound healing efficiency by the softer hydrogels is likely attributed to stress dissipation by expanding the cell proliferation, the up-regulation of blood vessel formation, and the enhanced polarization of M2/M1 macrophages, both of which would provide more oxygen and nutrients for cell proliferation and migration, leading to enhanced wound repair. This work not only reveals a mechanical property–wound healing relationship of zwitterionic polySBMA hydrogels, but also provides a promising candidate and strategy for the next-generation of wound dressings. 
    more » « less