Owing to significant differences across species in liver functions, in vitro human liver models are used for screening the metabolism and toxicity of compounds, modeling diseases, and cell‐based therapies. However, the extracellular matrix (ECM) scaffold used for such models often does not mimic either the complex composition or the nanofibrous topography of native liver ECM. Thus, here novel methods are developed to electrospin decellularized porcine liver ECM (PLECM) and collagen I into nano‐ and microfibers (≈200–1000 nm) without synthetic polymer blends. Primary human hepatocytes (PHHs) on nanofibers in monoculture or in coculture with nonparenchymal cells (3T3‐J2 embryonic fibroblasts or primary human liver endothelial cells) display higher albumin secretion, urea synthesis, and cytochrome‐P450 1A2, 2A6, 2C9, and 3A4 enzyme activities than on conventionally adsorbed ECM controls. PHH functions are highest on the collagen/PLECM blended nanofibers (up to 34‐fold higher CYP3A4 activity relative to adsorbed ECM) for nearly 7 weeks in the presence of the fibroblasts. In conclusion, it is shown for the first time that ECM composition and topography synergize to enhance and stabilize PHH functions for several weeks in vitro. The nanofiber platform can prove useful for the above applications and to elucidate cell‐ECM interactions in the human liver.
This content will become publicly available on October 13, 2023
- Award ID(s):
- 1933552
- Publication Date:
- NSF-PAR ID:
- 10382011
- Journal Name:
- Annual Meeting of the Biomedical Engineering Society
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
In vitro models of human liver functions are used across a diverse range of applications in preclinical drug development and disease modeling, with particular increasing interest in models that capture facets of liver inflammatory status. This study investigates how the interplay between biophysical and biochemical microenvironment cues influences phenotypic responses, including inflammation signatures, of primary human hepatocytes (PHHs) cultured in a commercially available perfused bioreactor. A 3D printing‐based alginate microwell system is designed to form thousands of hepatic spheroids in a scalable manner as a comparator 3D culture modality to the bioreactor. Soft, synthetic extracellular matrix (ECM) hydrogel scaffolds with biophysical properties mimicking features of liver are engineered to replace polystyrene scaffolds, and the biochemical microenvironment is modulated with a defined set of growth factors and signaling modulators. The supplemented media significantly increases tissue density, albumin secretion, and CYP3A4 activity but also upregulates inflammatory markers. Basal inflammatory markers are lower for cells maintained in ECM hydrogel scaffolds or spheroid formats than polystyrene scaffolds, while hydrogel scaffolds exhibit the most sensitive response to inflammation as assessed by multiplexed cytokine and RNA‐Seq analyses. Together, these engineered 3D liver microenvironments provide insights for probing human liver functions and inflammatory response in vitro.
-
2938 Using a Human Liver Tissue Equivalent (hLTE) Platform to Define the Functional Impact of Liver-Directed AAV Gene Therapy 63rd ASH Annual Meeting and Exposition, December 11-14, 2021, Georgia World Congress Center, Atlanta, GA Program: Oral and Poster Abstracts Session: 801. Gene Therapies: Poster II Hematology Disease Topics & Pathways: Bleeding and Clotting, Biological, Translational Research, Hemophilia, Genetic Disorders, Clinically Relevant, Diseases, Gene Therapy, Therapies Sunday, December 12, 2021, 6:00 PM-8:00 PM Ritu M Ramamurthy1*, Wen Ting Zheng2*, Sunil George, PhD1*, Meimei Wan1*, Yu Zhou, PhD1*, Baisong Lu, PhD1*, Colin E Bishop, PhD1*, Anthony Atala, M.D.1*, Christopher D Porada, PhD1* and M. Graca Almeida-Porada, MD3 1Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC 2Massachusetts Institute of Technology, Cambridge, MA 3Fetal Research and Therapy Program, Wake Forest Institute For Regenerative Medicine, Winston-Salem, NC Clinical trials employing AAV vectors for hemophilia A have been hindered by unanticipated immunological and/or inflammatory responses in some of the patients. Also, these trials have often yielded lower levels of transgene expression than were expected based upon preclinical studies, highlighting the poor correlation between the transduction efficiency observed in traditional 2D cultures of primary cells in vitro, and that observed inmore »
-
Abstract Despite considerable efforts in modeling liver disease in vitro, it remains difficult to recapitulate the pathogenesis of the advanced phases of non‐alcoholic fatty liver disease (NAFLD) with inflammation and fibrosis. Here, a liver‐on‐a‐chip platform with bioengineered multicellular liver microtissues is developed, composed of four major types of liver cells (hepatocytes, endothelial cells, Kupffer cells, and stellate cells) to implement a human hepatic fibrosis model driven by NAFLD: i) lipid accumulation in hepatocytes (steatosis), ii) neovascularization by endothelial cells, iii) inflammation by activated Kupffer cells (steatohepatitis), and iv) extracellular matrix deposition by activated stellate cells (fibrosis). In this model, the presence of stellate cells in the liver‐on‐a‐chip model with fat supplementation showed elevated inflammatory responses and fibrosis marker up‐regulation. Compared to transforming growth factor‐beta‐induced hepatic fibrosis models, this model includes the native pathological and chronological steps of NAFLD which shows i) higher fibrotic phenotypes, ii) increased expression of fibrosis markers, and iii) efficient drug transport and metabolism. Taken together, the proposed platform will enable a better understanding of the mechanisms underlying fibrosis progression in NAFLD as well as the identification of new drugs for the different stages of NAFLD.
-
Abstract Human induced pluripotent stem cell (iPSC)-derived liver organoids serve as models of organogenesis, disease, drug screening, and regenerative medicine. Prevailing methods for generating organoids rely on Matrigel, whose batch-to-batch variability and xenogeneic source pose challenges to mechanistic research and translation to human clinical therapy. In this report, we demonstrate that self-assembled Matrigel-free iPSC-derived organoids developed in rotating wall vessels (RWVs) exhibit greater hepatocyte-specific functions than organoids formed on Matrigel. We show that RWVs produce highly functional liver organoids in part by eliminating the need for Matrigel, which has adverse effects on hepatic lineage differentiation. RWV liver organoids sustain durable function over long-term culture and express a range of mature functional genes at levels comparable to adult human liver, while retaining some fetal features. Our results indicate that RWVs provide a simple and high-throughput way to generate Matrigel-free liver organoids suitable for research and clinical applications.