skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identifying Hurricane Evacuation Intent on Twitter
Evacuations have a significant impact on saving human lives during hurricanes. However, as a complex dynamic process, it is typically difficult to know individual evacuation decisions in real-time. Since a large amount of information is continuously posted through social media platforms, we can use them to understand individual evacuation behavior. In this paper, we collect tweets during Hurricane Irma in 2017 and train a text classifier in an active learning way to distinguish tweets expressing positive evacuation decisions from both negative and irrelevant ones. Additionally, we perform a demographic analysis and content clustering to investigate the potential causes and correlates of evacuation decisions. The results can be used to help inform planning strategies of emergency response agencies.  more » « less
Award ID(s):
2133960 1917112
PAR ID:
10382269
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the International AAAI Conference on Web and Social Media
Volume:
16
ISSN:
2162-3449
Page Range / eLocation ID:
618 to 627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evacuations have a significant impact on saving human lives during hurricanes. However, as a complex dynamic process, it is typically difficult to know individual evacuation decisions in real-time. Since a large amount of information is continuously posted through social media platforms, we can use them to understand individual evacuation behavior. In this paper, we collect tweets during Hurricane Irma in 2017 and train a text classifier in an active learning way to distinguish tweets expressing positive evacuation decisions from both negative and irrelevant ones. Additionally, we perform a demographic analysis and content clustering to investigate the potential causes and correlates of evacuation decisions. The results can be used to help inform planning strategies of emergency response agencies. 
    more » « less
  2. Understanding human movements in the face of natural disasters is critical for disaster evacuation planning, management, and relief. Despite the clear need for such work, these studies are rare in the literature due to the lack of available data measuring spatiotemporal mobility patterns during actual disasters. This study explores the spatiotemporal patterns of evacuation travels by leveraging users’ location information from millions of tweets posted in the hours prior and concurrent to Hurricane Matthew. Our analysis yields several practical insights, including the following: (1) We identified trajectories of Twitter users moving out of evacuation zones once the evacuation was ordered and then returning home after the hurricane passed. (2) Evacuation zone residents produced an unusually large number of tweets outside evacuation zones during the evacuation order period. (3) It took several days for the evacuees in both South Carolina and Georgia to leave their residential areas after the mandatory evacuation was ordered, but Georgia residents typically took more time to return home. (4) Evacuees are more likely to choose larger cities farther away as their destinations for safety instead of nearby small cities. (5) Human movements during the evacuation follow a log-normal distribution. 
    more » « less
  3. Individual evacuation decision making has been studied for multiple decades mainly using theory-based approaches, such as random utility theory. This study aims to bridge the research gap that no studies have adopted data-driven approaches in modeling the compliance of hurricane evacuees with government-issued evacuation orders using survey data. To achieve this, we conducted a survey in two coastal metropolitan regions of Florida (Jacksonville and Tampa) during the 2020 Atlantic hurricane season. After preprocessing survey data, we employed three supervised learning algorithms with different complexities, namely, multinomial logistic regression, random forest, and support vector classifier, to predict evacuation decisions under various hypothetical hurricane threats. We found that the evacuation decision is mainly determined by people’s perception of hurricane risk regardless of whether the government issued an order; COVID-19 risk is not a major factor in evacuation decisions but influences the destination type choice if an evacuation decision is made. Additionally, past and future evacuation destination types were found to be highly correlated. After comparing the algorithms for predicting evacuation decisions, we found that random forest can achieve satisfactory classification performance, especially for certain categories or when some categories are merged. Finally, we presented a conceptual optimization model to incorporate the data-driven modeling approach for evacuation behavior into a government-led evacuation planning framework to improve the compliance rate. 
    more » « less
  4. Abstract This study investigates how different risk predictors influenced households’ evacuation decisions during a dual‐threat event (Hurricane Laura and COVID‐19 pandemic). The Protective Action Decision Model (PADM) literature indicates that perceived threat variables are the most influential variables that drive evacuation decisions. This study applies the PADM to investigate a dual‐threat disaster that has conflicting protective action recommendations. Given the novelty, scale, span, impact, and messaging around COVID‐19, it is crucial to see how hurricanes along the Gulf Coast—a hazard addressed seasonally by residents with mostly consistent protective action messaging—produce different reactions in residents in this pandemic context. Household survey data were collected during early 2021 using a disproportionate stratified sampling procedure to include households located in mandatory and voluntary evacuation areas across the coastal counties in Texas and parishes in Louisiana that were affected by Hurricane Laura. Structural equation modeling was used to identify the relationships between perceived threats and evacuation decisions. The findings suggest affective risk perceptions strongly affected cognitive risk perceptions (CRPs). Notably, hurricane and COVID‐19 CRPs are significant predictors of hurricane evacuation decisions in different ways. Hurricane CRPs encourage evacuation, but COVID‐19 CRPs hinder evacuation decisions. 
    more » « less
  5. To mitigate the devastating impacts of hurricanes on people’s lives, communities, and societal infrastructures, disaster management would benefit considerably from a detailed understanding of evacuation, including the socio-demographics of the populations that evacuate, or remain, down to disaggregated geographic levels such as local neighborhoods. A detailed household evacuation prediction model for local neighborhoods requires both a robust household evacuation decision model and individual household data for small geographic units. This paper utilizes a recently pub- lished statistical meta-analysis for the first requirement and then conducts a rigorous population synthesis procedure for the second. Our model produces predicted non-evacuation rates for all US Census block groups for the Tampa-St. Petersburg-Clearwater Metropolitan Statistical Area for a Hurricane Irma-like storm along with their socio-demographic and hurricane impact risk profiles. Our model predictions indicate that non- evacuation rates are likely to vary considerably, even across neighboring block groups, driven by the variability in evacuation risk profiles. Our results also demonstrate how different predictors may come to the fore in influencing non-evacuation in different block groups, and that predictors which may have an outsize impact on individual household evacuation decisions, such as Race, are not necessarily associated with the greatest differentials in non-evacuation rates when we aggregate households to block group level and above. Our research is intended to provide a framework for the design of hurricane evacuation prediction tools that could be used in disaster management. 
    more » « less