Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Abstract Extracting an individual’s knowledge structure is a challenging task as it requires formalization of many concepts and their interrelationships. While there has been significant research on how to represent knowledge to support computational design tasks, there is limited understanding of the knowledge structures of human designers. This understanding is necessary for comprehension of cognitive tasks such as decision making and reasoning, and for improving educational programs. In this paper, we focus on quantifying theory-based causal knowledge, which is a specific type of knowledge held by human designers. We develop a probabilistic graph-based model for representing individuals’ concept-specific causal knowledge for a given theory. We propose a methodology based on probabilistic directed acyclic graphs (DAGs) that uses logistic likelihood function for calculating the probability of a correct response. The approach involves a set of questions for gathering responses from 205 engineering students, and a hierarchical Bayesian approach for inferring individuals’ DAGs from the observed responses. We compare the proposed model to a baseline three-parameter logistic (3PL) model from the item response theory. The results suggest that the graph-based logistic model can estimate individual students’ knowledge graphs. Comparisons with the 3PL model indicate that knowledge assessment is more accurate when quantifying knowledge at the level of causal relations than quantifying it using a scalar ability parameter. The proposed model allows identification of parts of the curriculum that a student struggles with and parts they have already mastered which is essential for remediation.more » « less
-
Abstract Extracting an individual's scientific knowledge is essential for improving educational assessment and understanding cognitive tasks in engineering activities such as reasoning and decision making. However, knowledge extraction is an almost impossible endeavor if the domain of knowledge and the available observational data are unrestricted. The objective of this paper is to quantify individuals' theory-based causal knowledge from their responses to given questions. Our approach uses directed acyclic graphs (DAGs) to represent causal knowledge for a given theory and a graph-based logistic model that maps individuals' question-specific subgraphs to question responses. We follow a hierarchical Bayesian approach to estimate individuals' DAGs from observations.The method is illustrated using 205 engineering students' responses to questions on fatigue analysis in mechanical parts. In our results, we demonstrate how the developed methodology provides estimates of population-level DAG and DAGs for individual students. This dual representation is essential for remediation since it allows us to identify parts of a theory that a population or individual struggles with and parts they have already mastered. An addendum of the method is that it enables predictions about individuals' responses to new questions based on the inferred individual-specific DAGs. The latter has implications for the descriptive modeling of human problem-solving, a critical ingredient in sociotechnical systems modeling.more » « less
-
null (Ed.)Heuristics are essential for addressing the complexities of engineering design processes. The goodness of heuristics is context-dependent. Appropriately tailored heuristics can enable designers to find good solutions efficiently, and inappropriate heuristics can result in cognitive biases and inferior design outcomes. While there have been several efforts at understanding which heuristics are used by designers, there is a lack of normative understanding about when different heuristics are suitable. Towards addressing this gap, this paper presents a reinforcement learning-based approach to evaluate the goodness of heuristics for three sub-problems commonly faced by designers while carrying out design under resource constraints: (i) learning the mapping between the design space and the performance space, (ii) sequential information acquisition in design, and (iii) decision to stop information acquisition. Using a multi-armed bandit formulation and simulation studies, we learn the heuristics that are suitable for these sub-problems under different resource constraints and problem complexities. The results of our simulation study indicate that the proposed reinforcement learning-based approach can be effective for determining the quality of heuristics for different sub-problems, and how the effectiveness of the heuristics changes as a function of the designer's preference (e.g., performance versus cost), the complexity of the problem, and the resources available.more » « less
-
null (Ed.)Cost and schedule overruns are common in the procurement of large-scale defense acquisition programs. Current work focuses on identifying the root causes of cost growth and schedule delays in the defense acquisition programs. There is need for a mix of quantitative and qualitative analysis of cost and schedule overruns which takes into account program factor such as, technology maturity, design maturity, initial acquisition time, and program complexity. Such analysis requires an easy to access database for program-specific data about how an acquisition programs’ technical and financial characteristics vary over the time. To fulfill this need, the objective of this paper is twofold: (i) to develop a database of major US defense weapons programs which includes details of the technical and financial characteristics and how they vary over time, and (ii) to test various hypotheses about the interdependence of such characteristics using the collected data. To achieve the objective, we use a mixed-method analysis on schedule and cost growth data available in the U.S. Government Accountability Office's (GAO's) defense acquisitions annual assessments during the period 2003-2017. We extracted both analytical and textual data from original reports into Excel files and further created an easy to access database accessible from a Python environment. The analysis reveals that technology immaturity is the major driver of cost and schedule growth during the early stages of the acquisition programs while technical inefficiencies drive cost overruns and schedule delays during the later stages. Further, we find that the acquisition programs with longer initial length do not necessarily have higher greater cost growth. The dataset and the results provide a useful starting point for the research community for modeling cost and schedule overruns, and for practitioners to inform their systems acquisition processes.more » « less
-
Systems engineering processes (SEPs) coordinate the effort of different individuals to generate a product satisfying certain requirements. As the involved engineers are self-interested agents, the goals at different levels of the systems engineering hierarchy may deviate from the system-level goals, which may cause budget and schedule overruns. Therefore, there is a need of a systems engineering theory that accounts for the human behavior in systems design. As experience in the physical sciences shows, a lot of knowledge can be generated by studying simple hypothetical scenarios, which nevertheless retain some aspects of the original problem. To this end, the objective of this article is to study the simplest conceivable SEP, a principalagent model of a one-shot, shallow SEP. We assume that the systems engineer (SE) maximizes the expected utility of the system, while the subsystem engineers (sSE) seek to maximize their expected utilities. Furthermore, the SE is unable to monitor the effort of the sSE and may not have complete information about their types. However, the SE can incentivize the sSE by proposing specific contracts. To obtain an optimal incentive, we pose and solve numerically a bilevel optimization problem. Through extensive simulations, we study the optimal incentives arising from different system-level value functions under various combinations of effort costs, problem-solving skills, and task complexities. Our numerical examples show that, the passed-down requirements to the agents increase as the task complexity and uncertainty grow and they decrease with increasing the agents' costs.more » « less
-
Extracting an individual’s knowledge structure is a challenging task as it requires formalization of many concepts and their interrelationships. While there has been significant research on how to represent knowledge to support computational design tasks, there is limited understanding of the knowledge structures of human designers. This understanding is necessary for comprehension of cognitive tasks such as decision making and reasoning, and for improving educational programs. In this paper, we focus on quantifying theory-based causal knowledge, which is a specific type of knowledge held by human designers. We develop a probabilistic graph-based model for representing individuals’ concept-specific causal knowledge for a given theory. We propose a methodology based on probabilistic directed acyclic graphs (DAGs) that uses logistic likelihood function for calculating the probability of a correct response. The approach involves a set of questions for gathering responses from 205 engineering students, and a hierarchical Bayesian approach for inferring individuals’ DAGs from the observed responses. We compare the proposed model to a baseline three-parameter logistic (3PL) model from the item response theory. The results suggest that the graph-based logistic model can estimate individual students’ knowledge graphs. Comparisons with the 3PL model indicate that knowledge assessment is more accurate when quantifying knowledge at the level of causal relations than quantifying it using a scalar ability parameter. The proposed model allows identification of parts of the curriculum that a student struggles with and parts they have already mastered which is essential for remediation.more » « less
-
Space mission-related projects are demanding and risky undertakings because of their complexity and cost. Many missions have failed over the years due to anomalies in either the launch vehicle or the spacecraft. Projects of such magnitude with undetected flaws due to ineffective process controls account for huge losses. Such failures continue to occur despite the studies on systems engineering process deficiencies and the state-of-the-art systems engineering practices in place. To further explore the reasons behind majority of the failures, we analyzed the failure data of space missions that happened over the last decade. Based on that information, we studied the launch-related failure events from a design decision-making perspective by employing failure event chain-based framework and identified some dominant cognitive biases that might have impacted the overall system performance leading to unintended catastrophes. The results of the study are presented in this paper.more » « less
-
Systems engineering processes coordinate the efforts of many individuals to design a complex system. However, the goals of the involved individuals do not necessarily align with the system-level goals. Everyone, including managers, systems engineers, subsystem engineers, component designers, and contractors, is self-interested. It is not currently understood how this discrepancy between organizational and personal goals affects the outcome of complex systems engineering processes. To answer this question, we need a systems engineering theory that accounts for human behavior. Such a theory can be ideally expressed as a dynamic hierarchical network game of incomplete information. The nodes of this network represent individual agents and the edges the transfer of information and incentives. All agents decide independently on how much effort they should devote to a delegated task by maximizing their expected utility; the expectation is over their beliefs about the actions of all other individuals and the moves of nature. An essential component of such a model is the quality function, defined as the map between an agent’s effort and the quality of their job outcome. In the economics literature, the quality function is assumed to be a linear function of effort with additive Gaussian noise. This simplistic assumption ignores two critical factors relevant to systems engineering: (1) the complexity of the design task, and (2) the problem-solving skills of the agent. Systems engineers establish their beliefs about these two factors through years of job experience. In this paper, we encode these beliefs in clear mathematical statements about the form of the quality function. Our approach proceeds in two steps: (1) we construct a generative stochastic model of the delegated task, and (2) we develop a reduced order representation suitable for use in a more extensive game-theoretic model of a systems engineering process. Focusing on the early design stages of a systems engineering process, we model the design task as a function maximization problem and, thus, we associate the systems engineer’s beliefs about the complexity of the task with their beliefs about the complexity of the function being maximized. Furthermore, we associate an agent’s problem solving-skills with the strategy they use to solve the underlying function maximization problem. We identify two agent types: “naïve” (follows a random search strategy) and “skillful” (follows a Bayesian global optimization strategy). Through an extensive simulation study, we show that the assumption of the linear quality function is only valid for small effort levels. In general, the quality function is an increasing, concave function with derivative and curvature that depend on the problem complexity and agent’s skills.more » « less
An official website of the United States government

Full Text Available