Heuristics are essential for addressing the complexities of engineering design processes. The goodness of heuristics is context-dependent. Appropriately tailored heuristics can enable designers to find good solutions efficiently, and inappropriate heuristics can result in cognitive biases and inferior design outcomes. While there have been several efforts at understanding which heuristics are used by designers, there is a lack of normative understanding about when different heuristics are suitable. Towards addressing this gap, this paper presents a reinforcement learning-based approach to evaluate the goodness of heuristics for three sub-problems commonly faced by designers: (1) learning the map between the design space and the performance space, (2) acquiring sequential information, and (3) stopping the information acquisition process. Using a multi-armed bandit formulation and simulation studies, we learn the suitable heuristics for these individual sub-problems under different resource constraints and problem complexities. Additionally, we learn the optimal heuristics for the combined problem (i.e., the one composing all three sub-problems), and we compare them to ones learned at the sub-problem level. The results of our simulation study indicate that the proposed reinforcement learning-based approach can be effective for determining the quality of heuristics for different problems, and how the effectiveness of the heuristics changes as a function of the designer’s preference (e.g., performance versus cost), the complexity of the problem, and the resources available.
more » « less- Award ID(s):
- 1662230
- PAR ID:
- 10382273
- Date Published:
- Journal Name:
- ASME IDETC
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Heuristics are essential for addressing the complexities of engineering design processes. The goodness of heuristics is context-dependent. Appropriately tailored heuristics can enable designers to find good solutions efficiently, and inappropriate heuristics can result in cognitive biases and inferior design outcomes. While there have been several efforts at understanding which heuristics are used by designers, there is a lack of normative understanding about when different heuristics are suitable. Towards addressing this gap, this paper presents a reinforcement learning-based approach to evaluate the goodness of heuristics for three sub-problems commonly faced by designers while carrying out design under resource constraints: (i) learning the mapping between the design space and the performance space, (ii) sequential information acquisition in design, and (iii) decision to stop information acquisition. Using a multi-armed bandit formulation and simulation studies, we learn the heuristics that are suitable for these sub-problems under different resource constraints and problem complexities. The results of our simulation study indicate that the proposed reinforcement learning-based approach can be effective for determining the quality of heuristics for different sub-problems, and how the effectiveness of the heuristics changes as a function of the designer's preference (e.g., performance versus cost), the complexity of the problem, and the resources available.more » « less
-
null (Ed.)Design optimization of metamaterials and other complex systems often relies on the use of computationally expensive models. This makes it challenging to use global multi-objective optimization approaches that require many function evaluations. Engineers often have heuristics or rules of thumb with potential to drastically reduce the number of function evaluations needed to achieve good convergence. Recent research has demonstrated that these design heuristics can be used explicitly in design optimization, indeed leading to accelerated convergence. However, these approaches have only been demonstrated on specific problems, the performance of different methods was diverse, and despite all heuristics being correct'', some heuristics were found to perform much better than others for various problems. In this paper, we describe a case study in design heuristics for a simple class of 2D constrained multiobjective optimization problems involving lattice-based metamaterial design. Design heuristics are strategically incorporated into the design search and the heuristics-enabled optimization framework is compared with the standard optimization framework not using the heuristics. Results indicate that leveraging design heuristics for design optimization can help in reaching the optimal designs faster. We also identify some guidelines to help designers choose design heuristics and methods to incorporate them for a given problem at hand.more » « less
-
null (Ed.)Design optimization of metamaterials and other complex systems often relies on the use of computationally expensive models. This makes it challenging to use global multi-objective optimization approaches that require many function evaluations. Engineers often have heuristics or rules of thumb with potential to drastically reduce the number of function evaluations needed to achieve good convergence. Recent research has demonstrated that these design heuristics can be used explicitly in design optimization, indeed leading to accelerated convergence. However, these approaches have only been demonstrated on specific problems, the performance of different methods was diverse, and despite all heuristics being ``correct'', some heuristics were found to perform much better than others for various problems. In this paper, we describe a case study in design heuristics for a simple class of 2D constrained multiobjective optimization problems involving lattice-based metamaterial design. Design heuristics are strategically incorporated into the design search and the heuristics-enabled optimization framework is compared with the standard optimization framework not using the heuristics. Results indicate that leveraging design heuristics for design optimization can help in reaching the optimal designs faster. We also identify some guidelines to help designers choose design heuristics and methods to incorporate them for a given problem at hand.more » « less
-
As Cloud's adoption surges across industries, the limitations of its default scheduler, particularly on large scales or for jobs outside of its initial design scope, have become increasingly prominent. While the default schedulers in various cloud platforms were primarily engineered to focus on simple and predictable tasks, reinforcement learning (RL)-based schedulers are attracting attention as they can predict a larger and more diverse cloud environment. Nevertheless, there are practical constraints to the use of RL. Retraining for adaptation is necessary for each new environment, and exploration taken during each training may lead to unexpected performance degradation at runtime. To address these issues, this paper presents Dejavu which combines reinforcement learning with neural networks to learn and resolve scheduling problems more effectively. To tackle the extended training time and performance degradation by unexpected explorations, we apply pretraining using Demonstrations from existing heuristics. This guides the RL agent to explore in a safe and efficient manner. Furthermore, we design a robust reward function to push Dejavu to compete with and eventually outperform, the exploited heuristics and other baselines. The experimental results demonstrate the efficacy of Dejavu, showing remarkable improvements in key metrics. Compared to the default scheduler, it boosts resource utilization by 6 % and shortens scheduling time by 3% during the scheduling period.more » « less
-
Abstract Design heuristics are traditionally used as qualitative principles to guide the design process, but they have also been used to improve the efficiency of design optimization. Using design heuristics as soft constraints or search operators has been shown for some problems to reduce the number of function evaluations needed to achieve a certain level of convergence. However, in other cases, enforcing heuristics can reduce diversity and slow down convergence. This paper studies the question of when and how a given set of design heuristics represented in different forms (soft constraints, repair operators, and biased sampling) can be utilized in an automated way to improve efficiency for a given design problem. An approach is presented for identifying promising heuristics for a given problem by estimating the overall impact of a heuristic based on an exploratory screening study. Two impact indices are formulated: weighted influence index and hypervolume difference index. Using this approach, the promising heuristics for four design problems are identified and the efficacy of selectively enforcing only these promising heuristics over both enforcement of all available heuristics and not enforcing any heuristics is benchmarked. In all problems, it is found that enforcing only the promising heuristics as repair operators enables finding good designs faster than by enforcing all available heuristics or not enforcing any heuristics. Enforcing heuristics as soft constraints or biased sampling functions results in improvements in efficiency for some of the problems. Based on these results, guidelines for designers to leverage heuristics effectively in design optimization are presented.