skip to main content


Title: Leveraging Design Heuristics for Multi-Objective Metamaterial Design Optimization
Design optimization of metamaterials and other complex systems often relies on the use of computationally expensive models. This makes it challenging to use global multi-objective optimization approaches that require many function evaluations. Engineers often have heuristics or rules of thumb with potential to drastically reduce the number of function evaluations needed to achieve good convergence. Recent research has demonstrated that these design heuristics can be used explicitly in design optimization, indeed leading to accelerated convergence. However, these approaches have only been demonstrated on specific problems, the performance of different methods was diverse, and despite all heuristics being correct'', some heuristics were found to perform much better than others for various problems. In this paper, we describe a case study in design heuristics for a simple class of 2D constrained multiobjective optimization problems involving lattice-based metamaterial design. Design heuristics are strategically incorporated into the design search and the heuristics-enabled optimization framework is compared with the standard optimization framework not using the heuristics. Results indicate that leveraging design heuristics for design optimization can help in reaching the optimal designs faster. We also identify some guidelines to help designers choose design heuristics and methods to incorporate them for a given problem at hand.  more » « less
Award ID(s):
1825521
NSF-PAR ID:
10294278
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IDETC/CIE2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Design optimization of metamaterials and other complex systems often relies on the use of computationally expensive models. This makes it challenging to use global multi-objective optimization approaches that require many function evaluations. Engineers often have heuristics or rules of thumb with potential to drastically reduce the number of function evaluations needed to achieve good convergence. Recent research has demonstrated that these design heuristics can be used explicitly in design optimization, indeed leading to accelerated convergence. However, these approaches have only been demonstrated on specific problems, the performance of different methods was diverse, and despite all heuristics being ``correct'', some heuristics were found to perform much better than others for various problems. In this paper, we describe a case study in design heuristics for a simple class of 2D constrained multiobjective optimization problems involving lattice-based metamaterial design. Design heuristics are strategically incorporated into the design search and the heuristics-enabled optimization framework is compared with the standard optimization framework not using the heuristics. Results indicate that leveraging design heuristics for design optimization can help in reaching the optimal designs faster. We also identify some guidelines to help designers choose design heuristics and methods to incorporate them for a given problem at hand. 
    more » « less
  2. Abstract

    Design heuristics are traditionally used as qualitative principles to guide the design process, but they have also been used to improve the efficiency of design optimization. Using design heuristics as soft constraints or search operators has been shown for some problems to reduce the number of function evaluations needed to achieve a certain level of convergence. However, in other cases, enforcing heuristics can reduce diversity and slow down convergence. This paper studies the question of when and how a given set of design heuristics represented in different forms (soft constraints, repair operators, and biased sampling) can be utilized in an automated way to improve efficiency for a given design problem. An approach is presented for identifying promising heuristics for a given problem by estimating the overall impact of a heuristic based on an exploratory screening study. Two impact indices are formulated: weighted influence index and hypervolume difference index. Using this approach, the promising heuristics for four design problems are identified and the efficacy of selectively enforcing only these promising heuristics over both enforcement of all available heuristics and not enforcing any heuristics is benchmarked. In all problems, it is found that enforcing only the promising heuristics as repair operators enables finding good designs faster than by enforcing all available heuristics or not enforcing any heuristics. Enforcing heuristics as soft constraints or biased sampling functions results in improvements in efficiency for some of the problems. Based on these results, guidelines for designers to leverage heuristics effectively in design optimization are presented.

     
    more » « less
  3. Recent developments in the computational automated design of electromagnetic devices, otherwise known as inverse design, have significantly enhanced the design process for nanophotonic systems. Inverse design can both reduce design time considerably and lead to high-performance, nonintuitive structures that would otherwise have been impossible to develop manually. Despite the successes enjoyed by structure optimization techniques, most approaches leverage electromagnetic solvers that require significant computational resources and suffer from slow convergence and numerical dispersion. Recently, a fast simulation and boundary-based inverse design approach based on boundary integral equations was demonstrated for two-dimensional nanophotonic problems. In this work, we introduce a new full-wave three-dimensional simulation and boundary-based optimization framework for nanophotonic devices also based on boundary integral methods, which achieves high accuracy even at coarse mesh discretizations while only requiring modest computational resources. The approach has been further accelerated by leveraging GPU computing, a sparse block-diagonal preconditioning strategy, and a matrix-free implementation of the discrete adjoint method. As a demonstration, we optimize three different devices: a 1:2 1550 nm power splitter and two nonadiabatic mode-preserving waveguide tapers. To the best of our knowledge, the tapers, which span 40 wavelengths in the silicon material, are the largest silicon photonic waveguiding devices to have been optimized using full-wave 3D solution of Maxwell’s equations. 
    more » « less
  4. Abstract

    To solve complex real-world problems, heuristics and concept-based approaches can be used to incorporate information into the problem. In this study, a concept-based approach called variable functioning (Fx) is introduced to reduce the optimization variables and narrow down the search space. In this method, the relationships among one or more subsets of variables are defined with functions using information prior to optimization; thus, the function variables are optimized instead of modifying the variables in the search process. By using the problem structure analysis technique and engineering expert knowledge, theFxmethod is used to enhance the steel frame design optimization process as a complex real-world problem. Herein, the proposed approach was coupled with particle swarm optimization and differential evolution algorithms then applied for three case studies. The algorithms are applied to optimize the case studies by considering the relationships among column cross-section areas. The results show thatFxcan significantly improve both the convergence rate and the final design of a frame structure, even if it is only used for seeding.

     
    more » « less
  5. Simulation optimization involves optimizing some objective function that can only be estimated via stochastic simulation. Many important problems can be profitably viewed within this framework. Whereas many solvers—implementations of simulation-optimization algorithms—exist or are in development, comparisons among solvers are not standardized and are often limited in scope. Such comparisons help advance solver development, clarify the relative performance of solvers, and identify classes of problems that defy efficient solution, among many other uses. We develop performance measures and plots, and estimators thereof, to evaluate and compare solvers and diagnose their strengths and weaknesses on a testbed of simulation-optimization problems. We explain the need for two-level simulation in this context and provide supporting convergence theory. We also describe how to use bootstrapping to obtain error estimates for the estimators. History: Accepted by Bruno Tuffin, area editor for simulation. Funding: This work was supported by the National Science Foundation [Grants CMMI-2035086, CMMI-2206972, and TRIPODS+X DMS-1839346]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplementary Information [ https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.1261 ] or is available from the IJOC GitHub software repository ( https://github.com/INFORMSJoC ) at [ http://dx.doi.org/10.5281/zenodo.7329235 ]. 
    more » « less