skip to main content

Title: Leveraging Design Heuristics for Multi-Objective Metamaterial Design Optimization
Design optimization of metamaterials and other complex systems often relies on the use of computationally expensive models. This makes it challenging to use global multi-objective optimization approaches that require many function evaluations. Engineers often have heuristics or rules of thumb with potential to drastically reduce the number of function evaluations needed to achieve good convergence. Recent research has demonstrated that these design heuristics can be used explicitly in design optimization, indeed leading to accelerated convergence. However, these approaches have only been demonstrated on specific problems, the performance of different methods was diverse, and despite all heuristics being correct'', some heuristics were found to perform much better than others for various problems. In this paper, we describe a case study in design heuristics for a simple class of 2D constrained multiobjective optimization problems involving lattice-based metamaterial design. Design heuristics are strategically incorporated into the design search and the heuristics-enabled optimization framework is compared with the standard optimization framework not using the heuristics. Results indicate that leveraging design heuristics for design optimization can help in reaching the optimal designs faster. We also identify some guidelines to help designers choose design heuristics and methods to incorporate them for a given problem at hand.
Authors:
; ; ;
Award ID(s):
1825521
Publication Date:
NSF-PAR ID:
10294278
Journal Name:
IDETC/CIE2021
Sponsoring Org:
National Science Foundation
More Like this
  1. Design optimization of metamaterials and other complex systems often relies on the use of computationally expensive models. This makes it challenging to use global multi-objective optimization approaches that require many function evaluations. Engineers often have heuristics or rules of thumb with potential to drastically reduce the number of function evaluations needed to achieve good convergence. Recent research has demonstrated that these design heuristics can be used explicitly in design optimization, indeed leading to accelerated convergence. However, these approaches have only been demonstrated on specific problems, the performance of different methods was diverse, and despite all heuristics being ``correct'', some heuristics were found to perform much better than others for various problems. In this paper, we describe a case study in design heuristics for a simple class of 2D constrained multiobjective optimization problems involving lattice-based metamaterial design. Design heuristics are strategically incorporated into the design search and the heuristics-enabled optimization framework is compared with the standard optimization framework not using the heuristics. Results indicate that leveraging design heuristics for design optimization can help in reaching the optimal designs faster. We also identify some guidelines to help designers choose design heuristics and methods to incorporate them for a given problem at hand.
  2. Recent developments in the computational automated design of electromagnetic devices, otherwise known as inverse design, have significantly enhanced the design process for nanophotonic systems. Inverse design can both reduce design time considerably and lead to high-performance, nonintuitive structures that would otherwise have been impossible to develop manually. Despite the successes enjoyed by structure optimization techniques, most approaches leverage electromagnetic solvers that require significant computational resources and suffer from slow convergence and numerical dispersion. Recently, a fast simulation and boundary-based inverse design approach based on boundary integral equations was demonstrated for two-dimensional nanophotonic problems. In this work, we introduce a new full-wave three-dimensional simulation and boundary-based optimization framework for nanophotonic devices also based on boundary integral methods, which achieves high accuracy even at coarse mesh discretizations while only requiring modest computational resources. The approach has been further accelerated by leveraging GPU computing, a sparse block-diagonal preconditioning strategy, and a matrix-free implementation of the discrete adjoint method. As a demonstration, we optimize three different devices: a 1:2 1550 nm power splitter and two nonadiabatic mode-preserving waveguide tapers. To the best of our knowledge, the tapers, which span 40 wavelengths in the silicon material, are the largest silicon photonic waveguiding devices to havemore »been optimized using full-wave 3D solution of Maxwell’s equations.« less
  3. Abstract

    To solve complex real-world problems, heuristics and concept-based approaches can be used to incorporate information into the problem. In this study, a concept-based approach called variable functioning (Fx) is introduced to reduce the optimization variables and narrow down the search space. In this method, the relationships among one or more subsets of variables are defined with functions using information prior to optimization; thus, the function variables are optimized instead of modifying the variables in the search process. By using the problem structure analysis technique and engineering expert knowledge, theFxmethod is used to enhance the steel frame design optimization process as a complex real-world problem. Herein, the proposed approach was coupled with particle swarm optimization and differential evolution algorithms then applied for three case studies. The algorithms are applied to optimize the case studies by considering the relationships among column cross-section areas. The results show thatFxcan significantly improve both the convergence rate and the final design of a frame structure, even if it is only used for seeding.

  4. Black hat hackers use malicious exploits to circumvent security controls and take advantage of system vulnerabilities worldwide, costing the global economy over $450 billion annually. While many organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates the exploit post date and vulnerability severity to help cybersecurity professionals with their device prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate that the proposed EVA-DSSM achieves precision at 1 scores 20% - 41% higher than non-DL approaches and 4% - 10% higher than DL-basedmore »approaches. We demonstrated the EVA-DSSM’s and DVSM’s practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and DVSM have important implications for analysts in security operations centers, incident response teams, and cybersecurity vendors.« less
  5. Black hat hackers use malicious exploits to circumvent security controls and take advantage of system vulnerabilities worldwide, costing the global economy over $450 billion annually. While many organizations are increasingly turning to cyber threat intelligence (CTI) to help prioritize their vulnerabilities, extant CTI processes are often criticized as being reactive to known exploits. One promising data source that can help develop proactive CTI is the vast and ever-evolving Dark Web. In this study, we adopted the computational design science paradigm to design a novel deep learning (DL)-based exploit-vulnerability attention deep structured semantic model (EVA-DSSM) that includes bidirectional processing and attention mechanisms to automatically link exploits from the Dark Web to vulnerabilities. We also devised a novel device vulnerability severity metric (DVSM) that incorporates the exploit post date and vulnerability severity to help cybersecurity professionals with their device prioritization and risk management efforts. We rigorously evaluated the EVA-DSSM against state-of-the-art non-DL and DL-based methods for short text matching on 52,590 exploit-vulnerability linkages across four testbeds: web application, remote, local, and denial of service. Results of these evaluations indicate that the proposed EVA-DSSM achieves precision at 1 scores 20%-41% higher than non-DL approaches and 4%-10% higher than DL-based approaches. We demonstrated themore »EVA-DSSM's and DVSM's practical utility with two CTI case studies: openly accessible systems in the top eight U.S. hospitals and over 20,000 Supervisory Control and Data Acquisition (SCADA) systems worldwide. A complementary user evaluation of the case study results indicated that 45 cybersecurity professionals found the EVA-DSSM and DVSM results more useful for exploit-vulnerability linking and risk prioritization activities than those produced by prevailing approaches. Given the rising cost of cyberattacks, the EVA-DSSM and DVSM have important implications for analysts in security operations centers, incident response teams, and cybersecurity vendors.« less