Introduction: Spheroids show great promise in being a better model for testing treatments for cancer in vitro when compared to monolayer cells. Single photon imaging of spheroids is limited by depth. Due to this reason, two photon imaging is necessary to obtain a full image of the spheroid. We developed a software that can evaluate the cellular metabolism of a spheroid by calculating the Redox Index (NADH divided by FAD). We tried to validate this software by treating the spheroids with an ATP antagonist.
more »
« less
Aromatic carbohydrate amphiphile disrupts cancer spheroids and prevents relapse
Spheroids recapitulate the organization, heterogeneity and microenvironment of solid tumors. Herein, we targeted spatiotemporally the accelerated metabolism of proliferative cells located on the spheroid surface that ensure structure maintenance and/or growth. We demonstrate that phosphorylated carbohydrate amphiphile acts as a potent antimetabolite due to glycolysis inhibition and to in situ formation of supramolecular net around spheroid surface where alkaline phosphatase is overexpressed. The efficiency of the treatment is higher in spheroids as compared to the conventional 2D cultures because of the 2-fold higher expression of glucose transporter 1 (GLUT1). Moreover, treated spheroids do not undergo following relapse.
more »
« less
- Award ID(s):
- 1808143
- PAR ID:
- 10382292
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 12
- Issue:
- 37
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 19088 to 19092
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Weihs, Daphne (Ed.)Multicellular cancer spheroids are an in vitro tissue model that mimics the three-dimensional microenvironment. As spheroids grow, they develop the gradients of oxygen, nutrients, and catabolites, affecting crucial tumor characteristics such as proliferation and treatment responses. The measurement of spheroid stiffness provides a quantitative measure to evaluate such structural changes over time. In this report, we measured the stiffness of size-matched day 5 and day 20 tumor spheroids using a custom-built microscale force sensor and conducted transmission electron microscopy (TEM) imaging to compare the internal structures. We found that older spheroids reduce interstitial spaces in the core region and became significantly stiffer. The measured elastic moduli were 260±100 and 680±150 Pa, for day 5 and day 20 spheroids, respectively. The day 20 spheroids showed an optically dark region in the center. Analyzing the high-resolution TEM images of spheroid middle sections across the diameter showed that the cells in the inner region of the day 20 spheroids are significantly larger and more closely packed than those in the outer regions. On the other hand, the day 5 spheroids did not show a significant difference between the inner and outer regions. The observed reduction of the interstitial space may be one factor that contributes to stiffer older spheroids.more » « less
-
Through high-fidelity numerical simulation based on the lattice Boltzmann method, we have conducted an in-depth study on the heat and mass transport from an oblate spheroid neutrally suspended in a simple shear flow. In the simulation, the temperature and mass concentration are modeled as a passive scalar released at the surface of the spheroid. The fluid dynamics induced by the interaction between the carrier fluid and the suspended spheroid, as well as the resultant scalar transport process, have been extensively investigated. A coupled transport mechanism comprising several components of the flow around the oblate spheroid has been identified. The effects of the Reynolds number and the aspect ratio of the spheroid on the flow characteristics and scalar transport rate are examined. The variation of the nondimensional scalar transport rate suggests that the effect of spheroid shape on scalar transfer rate can be decoupled from the effects of Peclet and Reynolds numbers, which facilitates the development of a correlation of scalar transfer rate for oblate spheroids based on the well-developed correlations for a sphere.more » « less
-
Human induced pluripotent stem cell (hiPSC)-derived brain spheroids can recapitulate the complex cytoarchitecture of the brain as well as the genetic/epigenetic footprint of human brain development. Although the brain spheroids can mimic the structures and functions of the brain in vivo at certain complexity, the 3D models do not have a perfusable microvascular network that can provide the interaction with spheroids. Here we report on a microfluidic-based three-dimensional, cortical spheroid tissue grafted on the vascular-network. Angiogenic sprouting was induced by using concentration gradient-driven angiogenic factors and its vascularized network was characterized in terms of morphology, directional alignment under perfusion, lumen formation, and permeability. This paper demonstrates the potential utility of a membrane-free in vitro cortical spheroid tissue construct with perfusable microvascular network that can be scaled up to a high throughput platform as a cost-effective alternative platform to model brain diseases and disorders.more » « less
-
Slowing peritoneal spread in high-grade serous ovarian cancer (HGSOC) would improve patient prognosis and quality of life. HGSOC spreads when single cells and spheroids detach, float through the peritoneal fluid and take over new sites, with spheroids thought to be more aggressive than single cells. Using our in vitro model of spheroid collective detachment, we determine that increased substrate stiffness led to the detachment of more spheroids. We identified a mechanism where Piezo1 activity increased MMP-1/MMP-10, decreased collagen I and fibronectin, and increased spheroid detachment. Piezo1 expression was confirmed in omental masses from patients with stage III/IV HGSOC. Using OV90 and CRISPR-modifiedPIEZO1−/−OV90 in a mouse xenograft model, we determined that while both genotypes efficiently took over the omentum, loss of Piezo1 significantly decreased ascitic volume, tumor spheroids in the ascites, and the number of macroscopic tumors in the mesentery. These results support that slowing collective detachment may benefit patients and identify Piezo1 as a potential therapeutic target.more » « less