skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heat and mass transport from neutrally suspended oblate spheroid in simple shear flow
Through high-fidelity numerical simulation based on the lattice Boltzmann method, we have conducted an in-depth study on the heat and mass transport from an oblate spheroid neutrally suspended in a simple shear flow. In the simulation, the temperature and mass concentration are modeled as a passive scalar released at the surface of the spheroid. The fluid dynamics induced by the interaction between the carrier fluid and the suspended spheroid, as well as the resultant scalar transport process, have been extensively investigated. A coupled transport mechanism comprising several components of the flow around the oblate spheroid has been identified. The effects of the Reynolds number and the aspect ratio of the spheroid on the flow characteristics and scalar transport rate are examined. The variation of the nondimensional scalar transport rate suggests that the effect of spheroid shape on scalar transfer rate can be decoupled from the effects of Peclet and Reynolds numbers, which facilitates the development of a correlation of scalar transfer rate for oblate spheroids based on the well-developed correlations for a sphere.  more » « less
Award ID(s):
2138740
PAR ID:
10488594
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Physics of Fluids
Volume:
35
Issue:
3
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advection-enhanced heat and mass transport from a single droplet neutrally suspended in a simple shear flow has been studied using high-fidelity numerical simulation. The capillary number ranges from 0.01 to 0.5, which encompasses the entire range of small deformation, large deformation, and breakup of the droplets. The Reynolds number is from 0.01 to 1, including regions of both weak and strong advection. The temperature and mass concentration are modeled as the concentration of a passive scalar released at the droplet surface. Two Schmidt numbers, 10 and 100, are considered, for which flow advection plays a role in the transport of passive scalar. For unbroken droplets, the interaction between the carrier fluid and the suspended droplet leads to several different flows around the droplet. The fluid motions together with scalar diffusion constitute a coupled transport mechanism for passive scalar. The dependence of scalar release rate on Reynolds and Peclet numbers can be roughly described by the correlation for a rigid sphere. For broken droplets, the basic flow features around the droplet during the process of elongation and breakup are similar to those of an unbroken droplet. The variation of the scalar release rate can be decomposed into several stages, corresponding to the process of droplet elongation and breakup. The variation of the scalar release rate exhibits a high correlation with the capillary, Reynolds, and Peclet numbers. This suggests that it is feasible to develop an empirical model that incorporates the effects of the number and size distributions of child droplets after breakup. 
    more » « less
  2. A Reynolds-averaged two-phase Eulerian model for sediment transport, SedFoam, is utilized in a twodimensional domain for a given sediment grain size, flow period, and mobility number to study the asymmetric and skewed flow effects on the sediment transport over coarse-sand migrating ripples. First, the model is validated with a full-scale water tunnel experiment of orbital ripple driven by acceleration skewed (asymmetric) oscillatory flow with good agreement in the flow velocity, net sediment transport, and ripple migration rate. The model results showed that the asymmetric flow causes a net onshore sediment transport of both suspended and near-bed load (the conventional bed load and part of the near-bed suspended load, responsible for ripple migration). The suspended load transport is driven by the “positive phase-lag” effect, while the near-bed transport is due to the large erosion of the boundary layer on the stoss flank, sediment avalanching on the lee flank, and the returning flux induced by the stoss vortex. Together, these processes result in a net onshore transport rate. In contrast, for an energetic velocity skewed (skewed) flow, the net transport rate is offshore directed. This is due to a larger offshore-directed suspended load transport rate, resulting from the “negative phase-lag” effect, compared to the onshore-directed near-bed load transport rate. Compared to the asymmetric flow, the onshore near-bed load transport (and migration) rate is limited by the larger offshore directed flux associated with returning flow on the lee side, due to a stronger lee vortex generation during the onshore flow half-cycle. In the combined asymmetric-skewed case, the near-bed load and migration rate are higher than in the asymmetric flow case. Moreover, the offshore-directed suspended load is much smaller compared to the skewed flow case due to a competition between the negative (due to velocity skewness) and positive (due to acceleration skewness) phase-lag effects. As a result, the net transport rate is onshore directed but slightly smaller than the asymmetric flow case. 
    more » « less
  3. The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. Two flow motions are identified. The first is a spiral flow oscillation above the herringbone structures that advect heat and mass from the top plane to herringbone structures. The second is a flow recirculation in the grooves between the ridges that advect heat and mass from the area around the tips of the structures to their side walls and the bottom surfaces. These two basic flow motions couple together to form a complex transport mechanism. The results show that when advective heat and mass transfer takes effect at relatively large Reynolds and Schmidt numbers, the dependence of the total transfer rate on Schmidt number follows a power law, with the exponent being the same as that in the Dittus–Boelter equation for turbulent heat transfer. As the Reynolds number increases, the dependence of the total transfer rate on the Reynolds number also approaches a power law, and the exponent is close to that in the Dittus–Boelter equation. 
    more » « less
  4. This paper evaluates the behavior of a single rigid ellipsoidal particle suspended in homogeneous viscous flow with a power-law generalized Newtonian fluid rheology using a custom-built finite element analysis (FEA) simulation. The combined effects of the shear-thinning fluid rheology, the particle aspect ratio, the initial particle orientation, and the shear-extensional rate factor in various homogeneous flow regimes on the particles dynamics and surface pressure evolution are investigated. The shear-thinning fluid behavior was found to modify the particle’s trajectory and alter the particle’s kinematic response. Moreover, the pressure distribution over the particle’s surface is significantly reduced by the shear-thinning fluid rheology. The FEA model is validated by comparing results of the Newtonian case with results obtained from the well-known Jeffery’s analytical model. Furthermore, Jeffery’s model is extended to define the particle’s trajectory in a special class of homogeneous Newtonian flows with combined extension and shear rate components typically found in axisymmetric nozzle flow contractions. The findings provide an improved understanding of key transport phenomenon related to physical processes involving fluid–structure interaction such as that which occurs within the flow field developed during material extrusion–deposition additive manufacturing of fiber reinforced polymeric composites. These results provide insight into important microstructural formations within the print beads. 
    more » « less
  5. Direct Numerical Simulation (DNS) of compressible spatially-developing turbulent boundary layers (SDTBL) is performed at a Mach number of 2.5 and low/high Reynolds numbers over isothermal Zero-Pressure Gradient (ZPG) flat plates. Turbulent inflow information is generated via a dynamic rescaling-recycling approach (J. Fluid Mech., 670, pp. 581-605, 2011), which avoids the use of empirical correlations in the computation of inlet turbulent scales. The range of the low Reynolds number case is approximately 400-800, based on the momentum thickness, freestream velocity and wall viscosity. DNS at higher Reynolds numbers (~3,000, about four-fold larger) is also carried out with the purpose of analyzing the effect of Reynolds number on the transport phenomena in the supersonic regime. Additionally, low/high order flow statistics are compared with DNS of an incompressible isothermal ZPG boundary layer at similar low Reynolds numbers and the temperature regarded as a passive scalar. Peaks of turbulence intensities move closer to the wall as the Reynolds number increases in the supersonic flat plate. Furthermore, Reynolds shear stresses depict a much larger "plateau" (constant shear layer) at the highest Reynolds number considered in present study. 
    more » « less