As computer science instruction gets offered to more young learn- ers, transitioning from elective to requirement, it is important to explore the relationship between pedagogical approach and student behavior. While different pedagogical approaches have particular motivations and intended goals, little is known about to what degree they satisfy those goals.
In this paper, we present analysis of 536 students’ (age 9-14, grades 4-8) work within a Scratch-based, Use-Modify-Create (UMC) curriculum, Scratch Encore. We investigate to what degree the UMC progression encourages students to engage with the content of the lesson while providing the flexibility for creativity and exploration.
Our findings show that this approach does balance structure with flexibility and creativity, allowing teachers wide variation in the degree to which they adhere to the structured tasks. Many students utilized recently-learned blocks in open-ended activities, yet they also explored blocks not formally taught. In addition, they took advantage of open-ended projects to change sprites, backgrounds, and integrate narratives into their projects.
more »
« less
Investigating the Use of Planning Sheets in Young Learners’ Open-Ended Scratch Projects
Open-ended tasks can be both beneficial and challenging to students learning to program. Such tasks allow students to be more creative and feel ownership over their work, but some students struggle with unstructured tasks and, without proper scaffolds, this can lead to negative learning experiences. Scratch is a widely used coding platform to teach computer science in classrooms and is designed to support learner creativity and expression. With its open-ended nature, Scratch can be used in various ways in the classroom to meet the needs of schools and districts. One challenge of using Scratch in classrooms is supporting learners in exploring their interests and fostering creativity while still meeting the instructional goals of a lesson and ensuring all students are engaged with, and understand, focal concepts and practices.
In this paper, we investigate the use of planning sheets to fa- cilitate novice programmers designing and implementing Scratch programs based on open-ended prompts. To evaluate the plan- ning sheets, we look at how closely students’ implemented Scratch projects match their plans and whether the implemented Scratch projects met the technical requirements for the given lesson. We analyzed 303 Scratch projects from 155 middle grade students (ages 10-14) who were introduced to programming via the Scratch Encore Curriculum. Completed Scratch projects that used planning sheets (202) were qualitatively coded to evaluate how closely they matched the initial plan, and Scratch programs (303) were analyzed with an automated grader to check if technical project requirements were met. Our results reveal that students that used planning sheets met significantly more technical project requirements and had more complex structures than those that did not have planning sheets. Results differ based on teacher and type of planning sheet used (physical vs. virtual). This work suggests that planning sheets are a helpful tool for young learners when completing open-ended coding projects.
more »
« less
- Award ID(s):
- 1738758
- NSF-PAR ID:
- 10382313
- Date Published:
- Journal Name:
- ICER 2022
- Volume:
- 1
- Page Range / eLocation ID:
- 247 to 263
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)As computer science instruction gets offered to more young learn- ers, transitioning from elective to requirement, it is important to explore the relationship between pedagogical approach and student behavior. While different pedagogical approaches have particular motivations and intended goals, little is known about to what degree they satisfy those goals. In this paper, we present analysis of 536 students’ (age 9-14, grades 4-8) work within a Scratch-based, Use-Modify-Create (UMC) curriculum, Scratch Encore. We investigate to what degree the UMC progression encourages students to engage with the content of the lesson while providing the flexibility for creativity and exploration. Our findings show that this approach does balance structure with flexibility and creativity, allowing teachers wide variation in the degree to which they adhere to the structured tasks. Many students utilized recently-learned blocks in open-ended activities, yet they also explored blocks not formally taught. In addition, they took advantage of open-ended projects to change sprites, backgrounds, and integrate narratives into their projects.more » « less
-
Given the increasing interest and need to teach students computer science in formal education settings, it is imperative to understand how to do so effectively and equitably. An important step of learning to program is being able to define the objective of a program and then plan out how to implement a program to produce the desired outcome. This step is particularly important in younger learners who may have little experience with programming or trying to create their own technological artifacts. In this paper, we explore how to scaffold young programmers in planning their open-ended programs as part of an intermediate Scratch curriculum for middle grade students. We analyze 203 paper and virtual planning documents from 103 5th-8th grade students. Our results reveal that the students often completed a majority of the document, which was consistent across grade levels. However, we found differences in student completion based on teacher and between physical and virtual documents. This work advances our understanding of how to support novice, young programmers in planning programs.more » « less
-
In computing classrooms, building an open-ended programming project engages students in the process of designing and implementing an idea of their own choice. An explicit planning process has been shown to help students build more complex and ambitious open-ended projects. However, novices encounter difficulties in exploring and creatively expressing ideas during planning. We present Idea Builder, a storyboarding-based planning system to help novices visually express their ideas. Idea Builder includes three features: 1) storyboards to help students express a variety of ideas that map easily to programming code, 2) animated example mechanics with example actors to help students explore the space of possible ideas supported by the programming environments, and 3) synthesized starter code to help students easily transition from planning to programming. Through two studies with high school coding workshops, we found that students self-reported as feeling creative and feeling easy to communicate ideas; having access to animated example mechanics of an actor help students to build those actors in their plans and projects; and that most students perceived the synthesized starter code from Idea Builder as helpful and time-saving.more » « less
-
null (Ed.)Given the importance of broadening participation in the field of computing, goals of supporting personal expression and developing a sense of belonging must live alongside the goals of conceptual knowledge and developing disciplinary expertise. Integrating opportunities for students to be creative in how they enact computing ideas plays an important role when designing curricula. We examine how student creativity, as expressed through theme and the use of costumes, backdrops, and narrative in Scratch projects, is affected by using a themed starter project. Starter projects are Scratch projects that include a set of sprites and backdrops aligned to a theme (e.g. baseball), but no code. Using within-group and between- group comparisons, we establish a baseline of what students do when they are given a starter project and explore how their projects differ in the absence of a starter project. This work contributes to our understanding of the impacts of structured elements within open-ended learning tasks and how we can design computer science learning experiences for students that promote opportunities for self-expression while engaging them in computing.more » « less