skip to main content


This content will become publicly available on March 7, 2025

Title: Idea Builder: Motivating Idea Generation and Planning for Open-Ended Programming Projects through Storyboarding
In computing classrooms, building an open-ended programming project engages students in the process of designing and implementing an idea of their own choice. An explicit planning process has been shown to help students build more complex and ambitious open-ended projects. However, novices encounter difficulties in exploring and creatively expressing ideas during planning. We present Idea Builder, a storyboarding-based planning system to help novices visually express their ideas. Idea Builder includes three features: 1) storyboards to help students express a variety of ideas that map easily to programming code, 2) animated example mechanics with example actors to help students explore the space of possible ideas supported by the programming environments, and 3) synthesized starter code to help students easily transition from planning to programming. Through two studies with high school coding workshops, we found that students self-reported as feeling creative and feeling easy to communicate ideas; having access to animated example mechanics of an actor help students to build those actors in their plans and projects; and that most students perceived the synthesized starter code from Idea Builder as helpful and time-saving.  more » « less
Award ID(s):
1917885
PAR ID:
10528558
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400704239
Page Range / eLocation ID:
1402 to 1408
Subject(s) / Keyword(s):
open-ended programming planning block-based programming novice programming
Format(s):
Medium: X
Location:
Portland OR USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Open-ended programming engages students by connecting computing with their real-world experience and personal interest. However, such open-ended programming tasks can be challenging, as they require students to implement features that they may be unfamiliar with. Code examples help students to generate ideas and implement program features, but students also encounter many learning barriers when using them. We explore how to design code examples to support novices' effective example use by presenting our experience of building and deploying Example Helper, a system that supports students with a gallery of code examples during open-ended programming. We deployed Example Helper in an undergraduate CS0 classroom to investigate students' example usage experience, finding that students used different strategies to browse, understand, experiment with, and integrate code examples and that students who make more sophisticated plans also used more examples in their projects. 
    more » « less
  2. null (Ed.)
    Open-ended programming increases students' motivation by allowing them to solve authentic problems and connect programming to their own interests. However, such open-ended projects are also challenging, as they often encourage students to explore new programming features and attempt tasks that they have not learned before. Code examples are effective learning materials for students and are well-suited to supporting open-ended programming. However, there is little work to understand how novices learn with examples during open-ended programming, and few real-world deployments of such tools. In this paper, we explore novices' learning barriers when interacting with code examples during open-ended programming. We deployed Example Helper, a tool that offers galleries of code examples to search and use, with 44 novice students in an introductory programming classroom, working on an open-ended project in Snap. We found three high-level barriers that novices encountered when using examples: decision, search, and integration barriers. We discuss how these barriers arise and design opportunities to address them. 
    more » « less
  3. null (Ed.)
    Project-based learning can encourage and motivate students to learn through exploring their own interests, but introduces special challenges for novice programmers. Recent research has shown that novice students perceive themselves to be "bad at programming, especially when they do not know how to start writing a program, or need to create a plan before getting started. In this paper, we present PlanIT, a guided planning tool integrated with the Snap! programming environment designed to help novices plan and program their open-ended projects. Within PlanIT, students can add a description for their project, use a to do list to help break down the steps of implementation, plan important elements of their program including actors, variables, and events, and view related example projects. We report findings from a pilot study of high school students using PlanIT, showing that students who used the tool learned to make more specific and actionable plans. Results from student interviews show they appreciate the guidance that PlanIT provides, as well as the affordances it offers to more quickly create program elements. 
    more » « less
  4. Our researchers seek to support students in building block-based programming projects that are motivating and engaging as well as valuable practice in learning to code. A difficult part of the programming process is planning. In this research, we explore how novice programmers used a custom-built planning tool, PlanIT, contrasted against how they used storyboarding when planning games. In a three-part study, we engaged novices in planning and programming three games: a maze game, a break-out game, and a mashup of the two. In a set of five case studies, we show how five pairs of students approached the planning and programming of these three games, illustrating that students felt more creative when storyboarding rather than using PlanIT. We end with a discussion on the implications of this work for designing supports for novices to plan open-ended projects. 
    more » « less
  5. null (Ed.)
    Given the importance of broadening participation in the field of computing, goals of supporting personal expression and developing a sense of belonging must live alongside the goals of conceptual knowledge and developing disciplinary expertise. Integrating opportunities for students to be creative in how they enact computing ideas plays an important role when designing curricula. We examine how student creativity, as expressed through theme and the use of costumes, backdrops, and narrative in Scratch projects, is affected by using a themed starter project. Starter projects are Scratch projects that include a set of sprites and backdrops aligned to a theme (e.g. baseball), but no code. Using within-group and between- group comparisons, we establish a baseline of what students do when they are given a starter project and explore how their projects differ in the absence of a starter project. This work contributes to our understanding of the impacts of structured elements within open-ended learning tasks and how we can design computer science learning experiences for students that promote opportunities for self-expression while engaging them in computing. 
    more » « less