Abstract Valdivia Bank (VB) is an oceanic plateau in the South Atlantic that formed from hotspot‐ridge volcanism during the Late Cretaceous at the Mid‐Atlantic Ridge (MAR). It is part of Walvis Ridge (WR), a quasi‐linear seamount chain extending from offshore Namibia to Tristan da Cunha and Gough Islands. To understand Valdivia Bank evolution, we interpret the seismic stratigraphy from multichannel seismic data paired with coring results from International Ocean Discovery Program (IODP) Expedition 391, which recovered mostly pelagic nannofossil ooze and chalks. The seismic section can be divided into three seismic units (SU), a lower transparent interval which is faulted and conforms to basement, a middle, moderate to high amplitude interval which is thick in local depocenters such as rifts, and an upper, subparallel transparent interval. Notable features include regional unconformities, dipping clinoforms, mass transport and contourite deposits, and volcanic structures. Additionally, three infilled rifts are observed across the plateau. Our analysis implies that following a period of sedimentation in the Campanian, the edifice was faulted through the Paleocene, coinciding with a South Atlantic tectonic reorganization. Local depocenters formed as a result of rifting. Subsequently, the plateau experienced thermal rejuvenation and regional uplift during the Eocene. Volcanic mounds were emplaced atop Cretaceous sediments and intrusives were emplaced within the sediments. During the Cenozoic, sedimentation was punctuated, likely in response to changes in the carbonate compensation depth and bottom current intensification. VB sedimentation was complex and largely influenced by the paleoceanographic context of the plateau, as well as thermal rejuvenation and tectonism.
more »
« less
Bathymetry of Valdivia Bank, Walvis Ridge, South Atlantic Ocean: Implications for Structure and Geologic History of a Hot Spot Plateau
Abstract Valdivia Bank is an oceanic plateau in the South Atlantic formed by hot spot magmatism at the Mid‐Atlantic Ridge during the Late Cretaceous. It is part of the Walvis Ridge, an aseismic ridge and seamount chain widely considered to be formed by age‐progressive volcanism from the Tristan‐Gough plume. To better understand the formation and history of this edifice, we developed a bathymetric map of Valdivia Bank by merging available multibeam echosounder data sets with a bathymetry grid based mainly on satellite altimetry (SRTM15+). The bathymetric map reveals previously unresolved features including extensive rift grabens, volcanic mounds and knolls, and large‐scale sediment transport systems. After Valdivia Bank was emplaced and probably eroded at sea level, it underwent a period of rifting, followed by a secondary magmatic pulse that caused regional uplift to sea‐level, followed by subsidence to current depths. Shallow banks at depths of ∼1,000 m are the result of a thick sediment pile atop uplifted volcanic crust. Several shallower mounds (∼1,000–520 m) and a guyot (∼220 m) likely resulted from coral reef growth atop one or more volcanic pedestals formed during the younger Cenozoic magmatic event. As sediments accumulated on the shallow platforms, sediment transport systems developed as gullies, channels and mass transport deposits carved valleys and troughs, shedding sediment into abyssal fans at the plateau base. The new bathymetric map demonstrates that oceanic plateaus are geologically active long after initial emplacement.
more »
« less
- Award ID(s):
- 1832197
- PAR ID:
- 10382373
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 23
- Issue:
- 11
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Walvis Ridge (WR) is a long-lived hotspot track that began with a continental flood basalt event at ~132 Ma during the initial opening of the South Atlantic Ocean. WR stretches ~3300 km to the active volcanic islands of Tristan da Cunha and Gough, and it was originally paired with Rio Grande Rise (RGR) oceanic plateau. Because of the duration of its volcanism and the length of its track, the Tristan-Gough hotspot forms the most pronounced bathymetric anomaly of all Atlantic hotspots. Its age progression, chemistry, and connection to flood basalts point to a lower mantle plume source, projected to be the hypothesized plume generation zone at the margin of the African large low shear-wave velocity province. The hotspot interacted with the Mid-Atlantic Ridge (MAR) during its early history, producing WR and RGR through plume-ridge interaction. Valdivia Bank, a WR plateau paired with the main part of RGR, represents heightened hotspot output and may have formed with RGR around a microplate, disrupting the expected hotspot age progression. After producing a relatively uniform composition from ~120 to ~70 Ma, WR split into three seamount chains with distinct isotopic compositions at about the time that the plume and MAR separated. With ~70 My spatial zonation, the hotspot displays the longest-lived geochemical zonation known. Currently at ~400 km width with young volcanic islands at both ends, the hotspot track is far wider than other major hotspot tracks. Thus, WR displays global extremes with respect to (1) width of its hotspot track, (2) longevity of zonation, (3) division into separate chains, and (4) plume-ridge interaction involving a microplate, raising questions about the geodynamic evolution of this hotspot track. Understanding WR is critical for knowledge of the global spectrum of plume systems. To test hypotheses about mantle plume zonation, plume activity around a microplate, and hotspot drift, we propose coring at six locations along the older ridge to recover successions of basaltic lava flows ranging in age from ~59 to 104 Ma. Samples will help us trace the evolution of geochemical and isotopic signatures as the hotspot track became zoned, offering vital clues about compositional changes of the plume source and important implications for understanding the origin of hotspot zonation. Dating will show the age progression of volcanism both at individual sites and along the ridge, testing whether WR formed as a strictly age-progressive hotspot track and whether Valdivia Bank formed as a plume pulse, extended volcanism around a microplate, or possibly even a continental fragment. Paleomagnetic data will track paleolatitude changes of the hotspot, testing whether hotspot drift or true polar wander, or both, explain changes in paleolatitude.more » « less
-
The Tristan-Gough plume system forms age-progressive volcanism on the African plate over ~130 Ma, extending to the active islands of Gough and Tristan-Inaccessible. Walvis Ridge forms massive ridges and plateaus that split into three narrower ridges of the Guyot Province. International Ocean Discovery Program (IODP) Expedition 391 Site U1577 sampled the extreme eastern flank of Valdivia Bank, an oceanic plateau within the Walvis Ridge. Here we report major and trace element data as well as Sr-Nd-Hf-Pb isotopic compositions of IODP 391 Site U1577. Three massive basalt flow subunits were drilled, separated only by thin chilled margins. The lack of any sediment or significant alteration at the contacts, and their consistent paleomagnetic inclination, all suggest that these flows were erupted in relatively quick succession. Accordingly, geochemical variations are minimal. Samples from Site U1577 form tight clusters that overlap in major and trace elements with previous dredge and Deep Sea Drilling Project (DSDP) drill site samples from the Walvis Ridge. All are less enriched in incompatible trace elements, i.e., Ti, K, P, Sr and Zr, relative to samples from Tristan and Gough islands and the Guyot province, consistent with Walvis Ridge samples formed by higher degrees of partial melting. In contrast to Walvis Ridge dredge samples, Site U1577 samples are shifted slightly towards higher 176Hf/177Hf and lower 208Pb/204Pb isotopic compositions, while overlapping in 207Pb/204Pb vs. 206Pb/204Pb as well as Sr-Nd isotopic compositions. Such elevated 176Hf/177Hf combined with lower 208Pb/204Pb isotopic compositions have otherwise only been reported from the Eastern Rio Grande Rise formed in near-/on-ridge position. Magnetic lineations imply formation of Valdivia Bank by seafloor spreading as well. Site U1577 samples provide geochemical support for this hypothesis whereas dredge samples lack signatures of plume-ridge interaction. Also, with Site U1577 on the eastern flank, it is farthest from the mid-Atlantic Ridge at the time of formation compared to the location of near-by dredge samples. With major and trace element data integrated on the same samples as isotopic compositions, we will address the contrasting possibilities of an integral depleted plume component versus evidence for plume-ridge interaction.more » « less
-
Abstract Valdivia Bank (VB) is a Late Cretaceous oceanic plateau formed by volcanism from the Tristan‐Gough hotspot at the Mid‐Atlantic Ridge (MAR). To better understand its origin and evolution, magnetic data were used to generate a magnetic anomaly grid, which was inverted to determine crustal magnetization. The magnetization model reveals quasi‐linear polarity zones crossing the plateau and following expected MAR paleo‐locations, implying formation by seafloor spreading over ∼4 Myr during the formation of anomalies C34n‐C33r. Paleomagnetism and biostratigraphy data from International Ocean Discovery Program Expedition 391 confirm the magnetic interpretation. Anomaly C33r is split into two negative bands, likely by a westward ridge jump. One of these negative anomalies coincides with deep rift valleys, indicating their age and mechanism of formation. These findings imply that VB originated by seafloor spreading‐type volcanism during a plate reorganization, not from a vertical stack of lava flows as expected for a large volcano.more » « less
-
Hotspot tracks (quasilinear chains of seamounts, ridges, and other volcanic structures) provide important records of plate motions, as well as mantle geodynamics, magma flux, and mantle source compositions. The Tristan-Gough-Walvis Ridge (TGW) hotspot track, extending from the active volcanic islands of Tristan da Cunha and Gough through a province of guyots and then along Walvis Ridge to the Etendeka flood basalt province, forms one of the most prominent and complex global hotspot tracks. The TGW hotspot track displays a tight linear age progression in which ages increase from the islands to the flood basalts (covering ~135 My). Unlike Pacific tracks, which are simple chains of seamounts that are often compared to chains of pearls, the TGW track is alternately a steep-sided narrow ridge, an oceanic plateau, subparallel linear ridges and chains of seamounts, and areas of what appear to be randomly dispersed seamounts. The track displays isotopic zonation over the last ~70 My. The zonation appears near the middle of the track just before it splits into two to three chains of ridge- and guyot-type seamounts. The older ridge is also overprinted with age-progressive late-stage volcanism, which was emplaced ~30–40 My after the initial eruptions and has a distinct isotopic composition. The plan for Expedition 391 was to drill at six sites, three along Walvis Ridge and three in the seamount (guyot) province, to gather igneous rocks to better understand the formation of track edifices, the temporal and geochemical evolution of the hotspot, and the variation in paleolatitudes at which the volcanic edifices formed. After a delay of 18 days to address a shipboard outbreak of the coronavirus disease 2019 (COVID-19) virus, Expedition 391 proceeded to drill at four of the proposed sites: three sites on the eastern Walvis Ridge around Valdivia Bank, an ocean plateau within the ridge, and one site on the lower flank of a guyot in the Center track, a ridge located between the Tristan subtrack (which extends from the end of Walvis Ridge to the island of Tristan da Cunha) and the Gough subtrack (which extends from Walvis Ridge to the island of Gough). One hole was drilled at Site U1575, located on a low portion of the northeastern Walvis Ridge north of Valdivia Bank. At this location, 209.9 m of sediments and 122.4 m of igneous basement were cored. The latter comprised 10 submarine lava units consisting of pillow, lobate, sheet, and massive lava flows, the thickest of which was ~21 m. Most lavas are tholeiitic, but some alkalic basalts were recovered. A portion of the igneous succession consists of low-Ti basalts, which are unusual because they appear in the Etendeka flood basalts but have not been previously found on Walvis Ridge. Two holes were drilled at Site U1576 on the west flank of Valdivia Bank. The first hole was terminated because a bit jammed shortly after penetrating igneous basement. Hole U1576A recovered a remarkable ~380 m thick sedimentary section consisting mostly of chalk covering a nearly complete sequence from Paleocene to Late Cretaceous (Campanian). These sediments display short and long cyclic color changes that imply astronomically forced and longer term paleoenvironmental changes. The igneous basement yielded 11 submarine lava units ranging from pillows to massive flows, which have compositions varying from tholeiitic basalt to basaltic andesite, the first occurrence of this composition recovered from the TGW track. These units are separated by seven sedimentary chalk units that range in thickness from 0.1 to 11.6 m, implying a long-term interplay of sedimentation and lava eruptions. Coring at Site U1577, on the extreme eastern flank of Valdivia Bank, penetrated a 154 m thick sedimentary section, the bottom ~108 m of which is Maastrichtian–Campanian (possibly Santonian) chalk with vitric tephra layers. Igneous basement coring progressed only 39.1 m below the sediment-basalt contact, recovering three massive submarine tholeiite basalt lava flows that are 4.1, 15.5, and >19.1 m thick, respectively. Paleomagnetic data from Sites U1577 and U1576 indicate that their volcanic basements formed just before the end of the Cretaceous Normal Superchron and during Chron 33r, shortly afterward, respectively. Biostratigraphic and paleomagnetic data suggest an east–west age progression across Valdivia Bank, becoming younger westward. Site U1578, located on a Center track guyot, provided a long and varied igneous section. After coring through 184.3 m of pelagic carbonate sediments mainly consisting of Eocene and Paleocene chalk, Hole U1578A cored 302.1 m of igneous basement. Basement lavas are largely pillows but are interspersed with sheet and massive flows. Lava compositions are mostly alkalic basalts with some hawaiite. Several intervals contain abundant olivine, and some of the pillow stacks consist of basalt with remarkably high Ti content. The igneous sequence is interrupted by 10 sedimentary interbeds consisting of chalk and volcaniclastics and ranging in thickness from 0.46 to 10.19 m. Paleomagnetic data display a change in basement magnetic polarity ~100 m above the base of the hole. Combining magnetic stratigraphy with biostratigraphic data, the igneous section is inferred to span >1 My. Abundant glass from pillow lava margins was recovered at Sites U1575, U1576, and U1578. Although the igneous penetration was only two-thirds of the planned amount, drilling during Expedition 391 obtained samples that clearly will lead to a deeper understanding of the evolution of the Tristan-Gough hotspot and its track. Relatively fresh basalts with good recovery will provide ample samples for geochemical, geochronologic, and paleomagnetic studies. Good recovery of Late Cretaceous and early Cenozoic chalk successions provides samples for paleoenvironmental study.more » « less
An official website of the United States government
