New geochronologic and paleomagnetic data from the North American Midcontinent Rift (MCR) reveal the synchronous emplacement of the Beaver River diabase, the anorthosite xenoliths within it, and the Greenstone Flow—one of the largest lava flows on Earth. A U‐Pb zircon date of 1091.83
Inclination is the angle of a magnetization vector from horizontal. Clastic sedimentary rocks often experience inclination shallowing whereby syn‐ to post‐depositional processes result in flattened detrital remanent magnetizations relative to local geomagnetic field inclinations. The deviation of recorded inclinations from true values presents challenges for reconstructing paleolatitudes. A widespread approach for estimating flattening factors (
- Award ID(s):
- 1847277
- PAR ID:
- 10382374
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 23
- Issue:
- 11
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract 0.21 Ma (2 ) from one of the anorthosite xenoliths is consistent with the anorthosite cumulate forming as part of the MCR and provides a maximum age constraint for the Beaver River diabase. Paired with the minimum age constraint of a cross‐cutting Silver Bay intrusion (1091.61 0.14 Ma; 2 ), these data tightly bracket the age of the Beaver River diabase to be 1091.7 0.2 Ma (95% CI), coeval with the eruption of the Greenstone Flow (1091.59 0.27 Ma; 2 )—which is further supported by indistinguishable tilt‐corrected paleomagnetic pole positions. Geochronological, paleomagnetic, mineralogical and geochemical data are consistent with a hypothesis that the Beaver River diabase was the feeder system for the Greenstone Flow. The large areal extent of the intrusives and large estimated volume of the volcanics suggest that they represent a rapid and voluminous ca. 1,092 Ma magmatic pulse near the end of the main stage of MCR magmatism. -
Abstract This work presents an extensive directional paleomagnetic database of the Kiaman reversed superchron. It is composed of 1,459 paleomagnetic directions from igneous rocks corresponding to 91 data sets (or paleomagnetic poles). An almost constant behavior of more concentrated and circular distributions for latitudes higher than 10° was found, which contrasts strongly with predictions of the representative models for the past few million years. We searched for simplified and spatially covariant Giant Gaussian Process (GGP) models that best explain the directional distribution of the Kiaman database. We used the mean strength based on the mean of virtual dipole moment (VDM) results for the period drawn from the available databases. Among the tested models, the one that best explains the directional paleosecular variation of the Kiaman database is the covariant type. According to this model, the correlations between the Gaussian coefficients are valid for the last 10 Myr and the Kiaman superchron. The resulting GGP models have
parameters similar to the 0–10 Ma models, which indicates that the relation between symmetric and antisymmetric families appears unchanged in the geological past. The relative variability of the Kiaman field, as inferred from the ratio from GGP models, is lower than for the past 10 Myr. Thus, as well as the paleointensity, seems to be a proxy that can be used for evaluating the geomagnetic development along the geological time. -
Abstract In this paper, we are interested in the following question: given an arbitrary Steiner triple system
on vertices and any 3‐uniform hypertree on vertices, is it necessary that contains as a subgraph provided ? We show the answer is positive for a class of hypertrees and conjecture that the answer is always positive. -
Abstract We prove that a WLD subspace of the space
consisting of all bounded, countably supported functions on a set Γ embeds isomorphically into if and only if it does not contain isometric copies of . Moreover, a subspace of is constructed that has an unconditional basis, does not embed into , and whose every weakly compact subset is separable (in particular, it cannot contain any isomorphic copies of ). -
Abstract It is proved that for every countable structure
and a computable successor ordinal α there is a countable structure which is ‐least among all countable structures such that is Σ‐definable in the αth jump . We also show that this result does not hold for the limit ordinal . Moreover, we prove that there is no countable structure with the degree spectrum for .