skip to main content


Title: A Rate‐, State‐, and Temperature‐Dependent Friction Law With Competing Healing Mechanisms
Abstract

The constitutive behavior of faults is central to many interconnected aspects of earthquake science, from fault dynamics to induced seismicity, to seismic hazards characterization. Yet, a friction law applicable to the range of temperatures found in the brittle crust and upper mantle is still missing. In particular, rocks often exhibit a transition from steady‐state velocity‐strengthening at room temperature to velocity‐weakening in warmer conditions that is poorly understood. Here, we investigate the effect of competing healing mechanisms on the evolution of frictional resistance in a physical model of rate‐, state‐, and temperature‐dependent friction. The yield strength for fault slip depends on the real area of contact, which is modulated by the competition between the growth and erosion of interfacial micro‐asperities. Incorporating multiple healing mechanisms and rock‐forming minerals with different thermodynamic properties allows a transition of the velocity‐ and temperature‐dependence of friction at steady‐state with varying temperatures. We explain the mechanical data for granite, pyroxene, amphibole, shale, and natural fault gouges with activation energies and stress power exponent for weakening of 10–50 kJ/mol and 55–150, respectively, compatible with subcritical crack growth and inter‐granular flow in the active slip zone. Activation energies for the time‐dependent healing process in the range 90–130 kJ/mol in dry conditions and 20–65 kJ/mol in wet conditions indicate the prominence of viscoelastic collapse of microasperities in the absence of water and of pressure‐solution creep, crack healing, and cementation when assisted by pore fluids.

 
more » « less
Award ID(s):
1848192
NSF-PAR ID:
10382488
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
127
Issue:
11
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Establishing a constitutive law for fault friction is a crucial objective of earthquake science. However, the complex frictional behavior of natural and synthetic gouges in laboratory experiments eludes explanations. Here, we present a constitutive framework that elucidates the rate, state, and temperature dependence of fault friction under the relevant sliding velocities and temperatures of the brittle lithosphere during seismic cycles. The competition between healing mechanisms, such as viscoelastic collapse, pressure‐solution creep, and crack sealing, explains the low‐temperature stability transition from steady‐state velocity‐strengthening to velocity‐weakening as a function of slip‐rate and temperature. In addition, capturing the transition from cataclastic flow to semi‐brittle creep accounts for the stabilization of fault slip at elevated temperatures. We calibrate the model using extensive laboratory data on synthetic albite and granite gouge, and on natural samples from the Alpine Fault and the Mugi Mélange in the Shimanto accretionary complex in Japan. The constitutive model consistently explains the evolving frictional response of fault gouge from room temperature to 600°C for sliding velocities ranging from nanometers to millimeters per second. The frictional response of faults can be uniquely determined by the in situ lithology and the prevailing hydrothermal conditions.

     
    more » « less
  2. null (Ed.)
    Abstract Observations of glacier slip over till beds, across a range of spatial and temporal scales, show abundant seismicity ranging from Mw∼−2 microearthquakes and tremor (submeter asperities and millisecond duration) to Mw∼7 slow-slip events (∼50  km rupture lengths and ∼30  min durations). A complete understanding of the mechanisms capable of producing seismic signals in these environments represents a strong constraint on bed conditions. In particular, there is a lack of experimental confirmation of velocity-weakening behavior of ice slipping on till, where friction decreases with increasing velocity—a necessity for nucleating seismic slip. To measure the frictional strength and stability of ice sliding against till, we performed a series of double-direct-shear experiments at controlled temperatures slightly above and below the ice melting point. Our results confirm velocity-strengthening ice–till slip at melting temperatures, as has been found in the few previous studies. We provide best-fit rate-and-state friction parameters and their standard deviations from averaging 13 experiments at equivalent conditions. We find evidence of similar velocity-strengthening behavior with 50% by volume debris-laden ice slid against till under the same conditions. In contrast, velocity-weakening and linear time-dependent healing of ice–till slip is present at temperatures slightly below the melting point, providing an experimentally supported mechanism for subglacial seismicity on soft-beds. The stability parameter (a−b) decreases with slip velocity, and evolution occurs over large (mm scale) displacements, suggesting that shear heating and melt buildup is responsible for the weakening. These measurements provide insight into subglacial stiffness in which seismicity of this type might be expected. We discuss glaciological circumstances pointing to potential field targets in which to test this frozen seismic asperity hypothesis. 
    more » « less
  3. Abstract

    The empirical constitutive modeling framework of rate‐ and state‐dependent friction (RSF) is commonly used to describe the time‐dependent frictional response of fault gouge to perturbations from steady sliding. In a previous study (Ferdowsi & Rubin, 2020), we found that a granular‐physics‐based model of a fault shear zone, with time‐independent properties at the contact scale, reproduces the phenomenology of laboratory rock and gouge friction experiments in velocity‐step and slide‐hold (SH) protocols. A few slide‐hold‐slide (SHS) simulations further suggested that the granular model might outperform current empirical RSF laws in describing laboratory data. Here, we explore the behavior of the same Discrete Element Method (DEM) model in SH and SHS protocols over a wide range of sliding velocities, hold durations, and system stiffnesses, and provide additional support for this view. We find that, similar to laboratory data, the rate of stress decay during SH simulations is in general agreement with the “Slip law” version of the RSF equations, using parameter values determined independently from velocity step tests. During reslides following long hold times, the model, similar to lab data, produces a nearly constant rate of frictional healing with log hold time, with that rate being in the range of ∼0.5 to 1 times the RSF “state evolution” parameterb. We also find that, as in laboratory experiments, the granular layer undergoes log‐time compaction during holds. This is consistent with the traditional understanding of state evolution under the Aging law, even though the associated stress decay is similar to that predicted by the Slip and not the Aging law.

     
    more » « less
  4. Abstract

    Localized frictional sliding on faults in the continental crust transitions at depth to distributed deformation in viscous shear zones. This brittle‐ductile transition (BDT), and/or the transition from velocity‐weakening (VW) to velocity‐strengthening (VS) friction, are controlled by the lithospheric thermal structure and composition. Here, we investigate these transitions, and their effect on the depth extent of earthquakes, using 2D antiplane shear simulations of a strike‐slip fault with rate‐and‐state friction. The off‐fault material is viscoelastic, with temperature‐dependent dislocation creep. We solve the heat equation for temperature, accounting for frictional and viscous shear heating that creates a thermal anomaly relative to the ambient geotherm which reduces viscosity and facilitates viscous flow. We explore several geotherms and effective normal stress distributions (by changing pore pressure), quantifying the thermal anomaly, seismic and aseismic slip, and the transition from frictional sliding to viscous flow. The thermal anomaly can reach several hundred degrees below the seismogenic zone in models with hydrostatic pressure but is smaller for higher pressure (and these high‐pressure models are most consistent with San Andreas Fault heat flow constraints). Shear heating raises the BDT, sometimes to where it limits rupture depth rather than the frictional VW‐to‐VS transition. Our thermomechanical modeling framework can be used to evaluate lithospheric rheology and thermal models through predictions of earthquake ruptures, postseismic and interseismic crustal deformation, heat flow, and the geological structures that reflect the complex deformation beneath faults.

     
    more » « less
  5. Abstract

    Rate and state frictional parameters are typically determined using two types of experimental protocols: velocity steps and slide‐hold‐slide events. Here we take a new approach by examining the frictional response to controlled, harmonic oscillations in load point velocity. We present a Matlab graphical user interface software package, called RSFitOSC, that allows users to easily determine frictional parameters by fitting oscillation events using the rate and state friction equations. We apply our new methods to a set of ice‐rock friction experiments conducted over a temperature range of −16.4°C to −2°C, and described in a companion paper: McCarthy et al. (2021,https://doi.org/10.1002/essoar.10509831.110.1002/essoar.10509831.1). Values of the frictional stability parameter (ab) determined from oscillations reveal dominantly velocity‐weakening behavior across the entire range of experimental conditions. However, values of (a–b) determined from velocity steps in the same experiments yield velocity‐strengthening behavior. We also show that the elastic stiffness of the ice‐rock system depends on the temperature, and is unlikely to be explained by changes in the elastic properties of ice. Load point velocity oscillations induce oscillations in applied shear stress. Many natural fault systems exhibit slip behaviors that depend on harmonic oscillations in applied tidal stresses. Our new method provides a way to study how frictional properties directly depend on parameters relevant to tidal forcing, and how oscillatory loading must be considered when extracting friction parameters.

     
    more » « less