skip to main content

This content will become publicly available on November 22, 2023

Title: A microfluidic fully paper-based analytical device integrated with loop-mediated isothermal amplification and nano-biosensors for rapid, sensitive, and specific quantitative detection of infectious diseases
Bacterial meningitis, an infection of the membranes (meninges) and cerebrospinal fluid (CSF) surrounding the brain and spinal cord, is one of the major causes of death and disability worldwide. Higher case-fatality rates and short survival times have been reported in developing countries. Hence, a quick, straightforward, and low-cost approach is in great demand for the diagnosis of meningitis. In this research, a microfluidic fully paper-based analytical device (μFPAD) integrated with loop-mediated isothermal amplification (LAMP) and ssDNA-functionalized graphene oxide (GO) nano-biosensors was developed for the first time for a simple, rapid, low-cost, and quantitative detection of the main meningitis-causing bacteria, Neisseria meningitidis ( N. meningitidis ). The results can be successfully read within 1 hour with the limit of detection (LOD) of 6 DNA copies per detection zone. This paper device also offers versatile functions by providing a qualitative diagnostic analysis ( i.e. , a yes or no answer), confirmatory testing, and quantitative analysis. These features make the presented μFPAD capable of a simple, highly sensitive, and specific diagnosis of N. meningitis . Furthermore, this microfluidic approach has great potential in the rapid detection of a wide variety of different other pathogens in low-resource settings.
Authors:
; ; ; ; ; ;
Award ID(s):
1953841 2122712 2052347 2216473
Publication Date:
NSF-PAR ID:
10382520
Journal Name:
Lab on a Chip
Volume:
22
Issue:
23
Page Range or eLocation-ID:
4693 to 4704
ISSN:
1473-0197
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantitative and dynamic analyses of immune cell secretory cytokines are essential for precise determination and characterization of the “immune phenotype” of patients for clinical diagnosis and treatment of immune-related diseases. Although multiple methods including the enzyme-linked immunosorbent assay (ELISA) have been applied for cytokine detection, such measurements remain very challenging in real-time, high-throughput, and high-sensitivity immune cell analysis. In this paper, we report a highly integrated microfluidic device that allows for on-chip isolation, culture, and stimulation, as well as sensitive and dynamic cytokine profiling of immune cells. Such a microfluidic sensing chip is integrated with cytometric fluorescent microbeads for real-time and multiplexed monitoring of immune cell cytokine secretion dynamics, consuming a relatively small extracted sample volume (160 nl) without interrupting the immune cell culture. Furthermore, it is integrated with a Taylor dispersion-based mixing unit in each detection chamber that shortens the immunoassay period down to less than 30 minutes. We demonstrate the profiling of multiple pro-inflammatory cytokine secretions ( e.g. interleukin-6, interleukin-8, and tumor necrosis factors) of human peripheral blood mononuclear cells (PBMCs) with a sensitivity of 20 pg ml −1 and a sample volume of 160 nl per detection. Further applications of this automated, rapid, and high-throughput microfluidic immunophenotypingmore »platform can help unleash the mechanisms of systemic immune responses, and enable efficient assessments of the pathologic immune status for clinical diagnosis and immune therapy.« less
  2. Open microfluidics have emerged as a low-cost, pumpless alternative strategy to conventional microfluidics for delivery of fluid for a wide variety of applications including rapid biochemical analysis and medical diagnosis. However, creating open microfluidics by tuning the wettability of surfaces typically requires sophisticated cleanroom processes that are unamenable to scalable manufacturing. Herein, we present a simple approach to develop open microfluidic platforms by manipulating the surface wettability of spin-coated graphene ink films on flexible polyethylene terephthalate via laser-controlled patterning. Wedge-shaped hydrophilic tracks surrounded by superhydrophobic walls are created within the graphene films by scribing micron-sized grooves into the graphene with a CO 2 laser. This scribing process is used to make superhydrophobic walls (water contact angle ∼160°) that delineate hydrophilic tracks (created through an oxygen plasma pretreatment) on the graphene for fluid transport. These all-graphene open microfluidic tracks are capable of transporting liquid droplets with a velocity of 20 mm s −1 on a level surface and uphill at elevation angles of 7° as well as transporting fluid in bifurcating cross and tree branches. The all-graphene open microfluidic manufacturing technique is rapid and amenable to scalable manufacturing, and consequently offers an alternative pumpless strategy to conventional microfluidics and creates possibilitiesmore »for diverse applications in fluid transport.« less
  3. Recent advances in transcriptomic analysis at single-cell resolution reveal cell-to-cell heterogeneity in a biological sample with unprecedented resolution. Partitioning single cells in individual micro-droplets and harvesting each cell's mRNA molecules for next-generation sequencing has proven to be an effective method for profiling transcriptomes from a large number of cells at high throughput. However, the assays to recover the full transcriptomes are time-consuming in sample preparation and require expensive reagents and sequencing cost. Many biomedical applications, such as pathogen detection, prefer highly sensitive, reliable and low-cost detection of selected genes. Here, we present a droplet-based microfluidic platform that permits seamless on-chip droplet sorting and merging, which enables completing multi-step reaction assays within a short time. By sequentially adding lysis buffers and reactant mixtures to micro-droplet reactors, we developed a novel workflow of single-cell reverse transcription loop-mediated-isothermal amplification (scRT-LAMP) to quantify specific mRNA expression levels in different cell types within one hour. Including single cell encapsulation, sorting, lysing, reactant addition, and quantitative mRNA detection, the fully on-chip workflow provides a rapid, robust, and high-throughput experimental approach for a wide variety of biomedical studies.
  4. Food safety and access to systematic approaches for ensuring detection of food hazards is an important issue in most developing countries. With the arrival of paper-based analytical devices (µPADs) as a promising, rapid, easy-to-use, and low-cost analytical tool, we demonstrated a simple microfluidic-based titration study for the analysis of packaged fruit juices. Similar, to the titration experiments using traditional glassware in chemistry laboratories, in this study the titration experiments were developed using paper microfluidics for the analysis of several analytes such as pH, vitamin C, sugars, and preservatives present in the packaged fruit juices. The allergen found commonly in dairy based mixtures and the non-pathogenic biochemical component responsible for food spoilage in cider based fruit juices were also determined. The results obtained using paper microfluidics were compared with those obtained using a conventional spectrophotometric technique. Finally, a paper microfluidics based multiplexed sensor was developed for the analysis of common nutritional ingredients, an allergen, and a non-pathogenic byproduct present in packaged fruit juices on a single platform. Overall, the results presented in this study reveal that the proposed paper microfluidic assisted colorimetric multiplexed sensor offers a quick and reliable tool for on-spot routine analysis for food safety applications.
  5. Abstract

    There is a great interest in low-cost, versatile microfluidic platforms of which the fabrication processes are rapid, straightforward, and translatable to industrial mass productions. In addition, it is beneficial for microfluidic devices to be reconfigurable in the field, so that multiple functions can be realized by a minimum number of devices. Here, we present a versatile acrylic-tape platform which allows highly accessible rapid prototyping of microfluidic devices, as well as device reconfiguration to realize different functions. The clean-room-free fabrication and sealing process only requires a laser cutter, acrylic, and tapes and can be done by an untrained person in the field. We experimentally characterized the relationship between the capillary flow speed and the channel height, the latter of which can be well controlled by the fabrication process. Reconfiguration of microfluidic functions was demonstrated on a single acrylic-tape device, thanks to the reversible sealing enabled by functional tapes. Different pumping mechanisms, including on-chip pumps for better portability and syringe pumps for precise fluid control, have been employed for the demonstration of two-phase flow and droplet generation, respectively. The low-cost and versatile acrylic-tape microfluidic devices are promising tools for applications in a wide range of fields, especially for point-of-care biomedical andmore »clinical applications.

    « less