Abstract Two low surface brightness (LSB) dwarf galaxies were identified recently as having little or no dark matter (DM), provoking widespread interest in their formation histories. These galaxies also host populous systems of star clusters that are on average larger and more luminous than typical globular clusters (GCs). We report an initial attempt to identify new candidate DM-deficient dwarfs via their unusual GC systems. Using a large catalog of LSB galaxies from the Dark Energy Survey, we inspect their Dark Energy Camera Legacy Survey (DECaLS) imaging and identify FCC 224 as a candidate found on the outskirts of the Fornax cluster. We analyze the GC system using DECaLS and archival Hubble Space Telescope WFPC2 imaging, and find an apparent population of overluminous GCs. More detailed follow-up of FCC 224 is in progress.
more »
« less
The Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER). IV. Star Cluster Catalog
Abstract We construct a catalog of star clusters from Hubble Space Telescope images of the inner disk of the Triangulum Galaxy (M33) using image classifications collected by the Local Group Cluster Search, a citizen science project hosted on the Zooniverse platform. We identify 1214 star clusters within the Hubble Space Telescope imaging footprint of the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER) survey. Comparing this catalog to existing compilations in the literature, 68% of the clusters are newly identified. The final catalog includes multiband aperture photometry and fits for cluster properties via integrated light spectral energy distribution fitting. The cluster catalog’s 50% completeness limit is ∼1500 M ☉ at an age of 100 Myr, as derived from comprehensive synthetic cluster tests.
more »
« less
- Award ID(s):
- 1757792
- PAR ID:
- 10382630
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 938
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 81
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT High-resolution imaging and strong gravitational lensing of high-redshift galaxies have enabled the detection of compact sources with properties similar to nearby massive star clusters. Often found to be very young, these sources may be globular clusters detected in their earliest stages. In this work, we compare predictions of high-redshift ($$z \sim 1$$–10) star cluster properties from the E-MOSAICS simulation of galaxy and star cluster formation with those of the star cluster candidates in strongly lensed galaxies from JWST and Hubble Space Telescope (HST) imaging. We select galaxies in the simulation that match the luminosities of the majority of lensed galaxies with star cluster candidates observed with JWST. We find that the luminosities, ages, and masses of the brightest star cluster candidates in the high-redshift galaxies are consistent with the E-MOSAICS model. In particular, the brightest cluster ages are in excellent agreement. The results suggest that star clusters in both low- and high-redshift galaxies may form via common mechanisms. However, the brightest clusters in the lensed galaxies tend to be $$\approx 1$$–$$1.5 \, \rm {mag}$$ brighter and $$\approx 0.5$$ dex more massive than the median E-MOSAICS predictions. We discuss the large number of effects that could explain the discrepancy, including simulation and observational limitations, stellar population models, cluster detection biases, and nuclear star clusters. Understanding these limitations would enable stronger tests of globular cluster formation models.more » « less
-
Abstract We present the largest catalog to date of star clusters and compact associations in nearby galaxies. We have performed aV-band-selected census of clusters across the 38 spiral galaxies of the PHANGS–Hubble Space Telescope (HST) Treasury Survey, and measured integrated, aperture-corrected near-ultraviolet-U-B-V-Iphotometry. This work has resulted in uniform catalogs that contain ∼20,000 clusters and compact associations, which have passed human inspection and morphological classification, and a larger sample of ∼100,000 classified by neural network models. Here, we report on the observed properties of these samples, and demonstrate that tremendous insight can be gained from just the observed properties of clusters, even in the absence of their transformation into physical quantities. In particular, we show the utility of the UBVI color–color diagram, and the three principal features revealed by the PHANGS-HST cluster sample: the young cluster locus, the middle-age plume, and the old globular cluster clump. We present an atlas of maps of the 2D spatial distribution of clusters and compact associations in the context of the molecular clouds from PHANGS–Atacama Large Millimeter/submillimeter Array. We explore new ways of understanding this large data set in a multiscale context by bringing together once-separate techniques for the characterization of clusters (color–color diagrams and spatial distributions) and their parent galaxies (galaxy morphology and location relative to the galaxy main sequence). A companion paper presents the physical properties: ages, masses, and dust reddenings derived using improved spectral energy distribution fitting techniques.more » « less
-
Abstract The PHANGS program is building the first data set to enable the multiphase, multiscale study of star formation across the nearby spiral galaxy population. This effort is enabled by large survey programs with the Atacama Large Millimeter/submillimeter Array (ALMA), MUSE on the Very Large Telescope, and the Hubble Space Telescope (HST), with which we have obtained CO(2–1) imaging, optical spectroscopic mapping, and high-resolution UV–optical imaging, respectively. Here, we present PHANGS-HST, which has obtained NUV– U – B – V – I imaging of the disks of 38 spiral galaxies at distances of 4–23 Mpc, and parallel V - and I -band imaging of their halos, to provide a census of tens of thousands of compact star clusters and multiscale stellar associations. The combination of HST, ALMA, and VLT/MUSE observations will yield an unprecedented joint catalog of the observed and physical properties of ∼100,000 star clusters, associations, H ii regions, and molecular clouds. With these basic units of star formation, PHANGS will systematically chart the evolutionary cycling between gas and stars across a diversity of galactic environments found in nearby galaxies. We discuss the design of the PHANGS-HST survey and provide an overview of the HST data processing pipeline and first results. We highlight new methods for selecting star cluster candidates, morphological classification of candidates with convolutional neural networks, and identification of stellar associations over a range of physical scales with a watershed algorithm. We describe the cross-observatory imaging, catalogs, and software products to be released. The PHANGS high-level science products will seed a broad range of investigations, in particular, the study of embedded stellar populations and dust with the James Webb Space Telescope, for which a PHANGS Cycle 1 Treasury program to obtain eight-band 2–21 μ m imaging has been approved.more » « less
-
Abstract Using recently acquired Hubble Space Telescope NIR observations ( J , Pa β , and H bands) of the nearby galaxy NGC 1313, we investigate the timescales required by a young star cluster to emerge from its natal cloud. We search for extincted star clusters, potentially embedded in their natal cloud as either (1) compact sources in regions with high H α /Pa β extinctions or (2) compact H ii regions that appear as point-like sources in the Pa β emission map. The NUV–optical–NIR photometry of the candidate clusters is used to derive their ages, masses, and extinctions via a least- χ 2 spectral energy distribution broad- and narrowband fitting process. The 100 clusters in the final samples have masses in the range and moderate extinctions, E ( B − V ) ≲ 1.0 mag. Focusing on the young clusters (0–6 Myr), we derive a weak correlation between extinction and age of the clusters. Almost half of the clusters have low extinctions, E ( B − V ) < 0.25 mag, already at very young ages (≤3 Myr), suggesting that dust is quickly removed from clusters. A stronger correlation is found between the morphology of the nebular emission (compact, partial or absent, both in H α and Pa β ) and cluster age. Relative fractions of clusters associated with a specific nebular morphology are used to estimate the typical timescales for clearing the natal gas cloud, resulting in between 3 and 5 Myr, ∼1 Myr older than what was estimated from NUV–optical-based cluster studies. This difference hints at a bias for optical-only-based studies, which James Webb Space Telescope will address in the coming years.more » « less