skip to main content

This content will become publicly available on September 9, 2023

Title: Embedded Magnetic Sensing for Feedback Control of Soft HASEL Actuators
The need to create more viable soft sensors is increasing in tandem with the growing interest in soft robots. Several sensing methods, like capacitive stretch sensing and intrinsic capacitive self-sensing, have proven to be useful when controlling soft electro-hydraulic actuators, but are still problematic. This is due to challenges around high-voltage electronic interference or the inability to accurately sense the actuator at higher actuation frequencies. These issues are compounded when trying to sense and control the movement of a multiactuator system. To address these shortcomings, we describe a two-part magnetic sensing mechanism to measure the changes in displacement of an electro-hydraulic (HASEL) actuator. Our magnetic sensing mechanism can achieve high accuracy and precision for the HASEL actuator displacement range, and accurately tracks motion at actuation frequencies up to 30 Hz, while being robust to changes in ambient temperature and relative humidity. The high accuracy of the magnetic sensing mechanism is also further emphasized in the gripper demonstration. Using this sensing mechanism, we can detect submillimeter difference in the diameters of three tomatoes. Finally, we successfully perform closed-loop control of one folded HASEL actuator using the sensor, which is then scaled into a deformable tilting platform of six units (one HASEL more » actuator and one sensor) that control a desired end effector position in 3D space. This work demonstrates the first instance of sensing electro-hydraulic deformation using a magnetic sensing mechanism. The ability to more accurately and precisely sense and control HASEL actuators and similar soft actuators is necessary to improve the abilities of soft, robotic platforms. « less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
IEEE Transactions on Robotics
Page Range or eLocation-ID:
1 to 15
Sponsoring Org:
National Science Foundation
More Like this
  1. Dielectric elastomer (DE) materials, a category of electroactive polymers, can be used to design actuators that are flexible, resilient, lightweight, and durable. However, due to the uncertainties in its actuation dynamics, DE actuators always rely on feedback control to perform accurate and safe operations. In this paper, a tubular dielectric elastomer actuator (DEA) with self-sensing capability is developed. It does not require external devices to measure displacement for feedback control. The displacement of the actuator is controlled using a proportional-integral controller with the capacitance measured at high probing frequency as the self-sensing mechanism component of the actuator. By superimposing actuation and probing voltage and applying them to the DE tube, the actuation voltage activates the movement of the DE tube and the probing voltage is used for self-sensing. Fast Fourier Transform (FFT) is then used to filter a given frequency of the probing current and voltage and then calculate the capacitance from the probing current and voltage during each time window. With the relationship between capacitance and displacement of the DE tube, the displacement output is estimated online and self-sensing without an external sensor is achieved. The self-sensing signal is then used as a feedback signal in a closed-loop designmore »to follow a reference signal for tracking. The experimental results validate the self-sensing of the DE actuator in feedback control.« less
  2. Mattoli, Virgilio (Ed.)
    Pneumatically-actuated soft robots have advantages over traditional rigid robots in many applications. In particular, their flexible bodies and gentle air-powered movements make them more suitable for use around humans and other objects that could be injured or damaged by traditional robots. However, existing systems for controlling soft robots currently require dedicated electromechanical hardware (usually solenoid valves) to maintain the actuation state (expanded or contracted) of each independent actuator. When combined with power, computation, and sensing components, this control hardware adds considerable cost, size, and power demands to the robot, thereby limiting the feasibility of soft robots in many important application areas. In this work, we introduce a pneumatic memory that uses air (not electricity) to set and maintain the states of large numbers of soft robotic actuators without dedicated electromechanical hardware. These pneumatic logic circuits use normally-closed microfluidic valves as transistor-like elements; this enables our circuits to support more complex computational functions than those built from normally-open valves. We demonstrate an eight-bit nonvolatile random-access pneumatic memory (RAM) that can maintain the states of multiple actuators, control both individual actuators and multiple actuators simultaneously using a pneumatic version of time division multiplexing (TDM), and set actuators to any intermediate position usingmore »a pneumatic version of analog-to-digital conversion. We perform proof-of-concept experimental testing of our pneumatic RAM by using it to control soft robotic hands playing individual notes, chords, and songs on a piano keyboard. By dramatically reducing the amount of hardware required to control multiple independent actuators in pneumatic soft robots, our pneumatic RAM can accelerate the spread of soft robotic technologies to a wide range of important application areas.« less
  3. Ferromagnetic soft materials can generate flexible mobility and changeable configurations under an external magnetic field. They are used in a wide variety of applications, such as soft robots, compliant actuators, flexible electronics, and bionic medical devices. The magnetic field enables fast and biologically safe remote control of the ferromagnetic soft material. The shape changes of ferromagnetic soft elastomers are driven by the ferromagnetic particles embedded in the matrix of a soft elastomer. The external magnetic field induces a magnetic torque on the magnetized soft material, causing it to deform. To achieve the desired motion, the soft active structure can be designed by tailoring the layouts of the ferromagnetic soft elastomers. This paper aims to optimize multi-material ferromagnetic actuators. Multi-material ferromagnetic flexible actuators are optimized for the desired kinematic performance using the reconciled level set method. This type of magnetically driven actuator can carry out more complex shape transformations by introducing ferromagnetic soft materials with more than one magnetization direction. Whereas many soft active actuators exist in the form of thin shells, the newly proposed extended level set method (X-LSM) is employed to perform conformal topology optimization of ferromagnetic soft actuators on the manifolds. The objective function comprises two sub-objective functions,more »one for the kinematic requirement and the other for minimal compliance. Shape sensitivity analysis is derived using the material time derivative and the adjoint variable method. Three examples are provided to demonstrate the effectiveness of the proposed framework.« less
  4. Abstract

    This work reports a three-dimensional polymer interdigitated pillar electrostatic actuator that can produce force densities 5–10× higher than those of biological muscles. The theory of operation, scaling, and stability is investigated using analytical and FEM models. The actuator consists of two high-density arrays of interdigitated pillars that work against a restoring force generated by an integrated flexure spring. The actuator architecture enables linear actuation with higher displacements and pull-in free actuation to prevent the in-use stiction associated with other electrostatic actuators. The pillars and springs are 3D printed together in the same structure. The pillars are coated with a gold–palladium alloy layer to form conductive electrodes. The space between the pillars is filled with liquid dielectrics for higher breakdown voltages and larger electrostatic forces due to the increase in the dielectric constant. We demonstrated a prototype actuator that produced a maximum work density of 54.6 µJ/cc and an electrical-to-mechanical energy coupling factor of 32% when actuated at 4000 V. The device was operated for more than 100,000 cycles with no degradation in displacements. The flexible polymer body was robust, allowing the actuator to operate even after high mechanical force impact, which was demonstrated by operation after drop tests. As it ismore »scaled further, the reported actuator will enable soft and flexible muscle-like actuators that can be stacked in series and parallel to scale the resulting forces. This work paves the way for high-energy density actuators for microrobotic applications.

    « less
  5. Soft materials and compliant actuation concepts have generated new design and control approaches in areas from robotics to wearable devices. Despite the potential of soft robotic systems, most designs currently use hard pumps, valves, and electromagnetic actuators. In this work, we take a step towards fully soft robots by developing a new compliant electromagnetic actuator architecture using gallium-indium liquid metal conductors, as well as compliant permanent magnetic and compliant iron composites. Properties of the new materials are first characterized and then co-fabricated to create an exemplary biologically-inspired soft actuator with pulsing or grasping motions, similar to Xenia soft corals. As current is applied to the liquid metal coil, the compliant permanent magnetic tips on passive silicone arms are attracted or repelled. The dynamics of the robotic actuator are characterized using stochastic system identification techniques and then operated at the resonant frequency of 7 Hz to generate high-stroke (>6 mm) motions.