Dielectric electroactive polymers (DEAPs) represent a subclass of smart materials that are capable of converting between electrical and mechanical energy. These materials can be used as energy harvesters, sensors, and actuators. However, current production and testing of these devices is limited and requires multiple step processes for fabrication. This paper presents an alternate production method via 3D printing using Thermoplastic Polyurethane (TPU) as a dielectric elastomer. This study provides electromechanical characterization of flexible dielectric films produced by additive manufacturing and demonstrates their use as DEAP actuators. The dielectric material characterization of TPU includes: measurement of the dielectric constant, percentage radial elongation, tensile properties, pre-strain effects on actuation, surface topography, and measured actuation under high voltage. The results demonstrated a high dielectric constant and ideal elongation performance for this material, making the material suitable for use as a DEAP actuator. In addition, it was experimentally determined that the tensile properties of the material depend on the printing angle and thickness of the samples thereby making these properties controllable using 3D printing. Using surface topography, it was possible to analyze how the printing path, affects the roughness of the films and consequently affects the voltage breakdown of the structure and creates preferential deformation directions. Actuators produced with concentric circle paths produced an area expansion of 4.73% uniformly in all directions. Actuators produced with line paths produced an area expansion of 5.71% in the direction where the printed lines are parallel to the deformation direction, and 4.91% in the direction where the printed lines are perpendicular to the deformation direction.
more »
« less
Rapid 3D Printing of Electrohydraulic (HASEL) Tentacle Actuators
Abstract A comprehensive material system is introduced for the additive manufacturing of electrohydraulic (HASEL) tentacle actuators. This material system consists of a photo‐curable, elastomeric silicone‐urethane with relatively strong dielectric properties (εr ≈ 8.8 at 1 kHz) in combination with ionically‐conductive hydrogel and silver paint electrodes that displace a vegetable‐based liquid dielectric under the application of an electric field. The electronic properties of the silicone material as well as the mechanical properties of the constitutive silicone and hydrogel materials are investigated. The hydraulic pressure exerted on the dielectric working fluid in these capacitive actuators is measured in order to characterize their quasi‐static behavior. Various design features enabled by 3D printing influence this behavior—decreasing the voltage at which actuation begins or increasing the force density in the system. Using a capacitance change of >35% across the actuators while powered, a demonstration of self‐sensing inherent to HASELs is shown. Antagonistic pairs of the 3D printed actuators are shown to exert a blocked force of over 400 mN. An electrohydraulic tentacle actuator is then fabricated to demonstrate the use of this material and actuation system in a synthetic hydrostat. This tentacle actuator is shown to achieve motion in a multi‐dimensional space.
more »
« less
- Award ID(s):
- 1830924
- PAR ID:
- 10456445
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 30
- Issue:
- 40
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Inspired by nature, we herein demonstrate a family of multi-responsive hydrogel-based actuators that are encoded with anisotropic swelling behavior to provide rapid and controllable motion. Fabrication of the proposed anisotropy-encoded hydrogel actuators relies on the high resolution stereolithography 3D printing of functionally graded structures made of discrete layers having different volume expansion properties. Three separate synthetic strategies based on (i) asymmetrical distribution of a layer's surface area to volume ratio via mechanical design, (ii) crosslinking density via UV photo-exposure, or (iii) chemical composition via resin vat exchange have been accordingly demonstrated for developing very smooth gradients within the printed hydrogel-based actuator. Our chemomechanical programming enables fast, reversible, repeatable and multimodal bending actuation in response to any immediate environmental change ( i.e. based on osmotic pressure, temperature and pH) from a single printed structure.more » « less
-
This paper describes a series of endurance and material property tests conducted on a pneumatic, fabric-reinforced inflatable soft actuator made of Dragon Skin 30 silicone, which exhibited performance variations during operation. It is important to understand the level of variation over time and how it affects the motions of the soft actuators. The tests were designed to investigate the repeatability and durability of the actuator by measuring changes in its trajectories after long working periods, determining its failure pressure, and examining its elasticity through tensile tests. The experiments were performed on multiple soft actuators, and the results show pertinent information about the variation in their motion and how it relates to the material behavior of the silicone. This information enhances our understanding of the real-world behavior of silicone soft actuators and enables us to better control their performance in our applications.more » « less
-
Experimentally Identified Models of McKibben Soft Actuators as Primary Movers and Passive Structuresnull (Ed.)Abstract Soft robots join body and actuation, forming their structure from the same elements that induce motion. Soft actuators are commonly modeled or characterized as primary movers, but their second role as support structure introduces strain–pressure combinations outside of normal actuation. This article examines a more complete set of possible strain–pressure combinations for McKibben actuators, including passive or unpressurized, deformation, pressurized extension and compression of a pressurized actuator beyond the maximum actuation strain. Each region is investigated experimentally, and empirical force–displacement–pressure relationships are identified. Particular focus is placed on ensuring that empirical relationships are consistent at boundaries between an actuator’s strain–pressure regions. The presented methodology is applied to seven McKibben actuator designs, which span variations in wall thickness, enclosure material, and actuator diameter. Empirical results demonstrate a trade-off between maximum contraction strain and force required to passively extend. The results also show that stiffer elastomers require an extreme increase in pressure to contract without a compensatory increase in maximum achieved force. Empirical force–displacement–pressure models were developed for each variant across all the studied strain–pressure regions, enabling future design variation studies for soft robots that use actuators as structures.more » « less
-
Madden, John D.; Anderson, Iain A.; Shea, Herbert R. (Ed.)Soft polymer actuators are in increasing demand due to their more fluid like motion and flexibility when actuated than compared with rigid actuators, which makes them valuable in diverse engineering applications. One of the main types of soft polymer actuators is the dielectric elastomer actuator, whose working principle is to apply a voltage potential difference between electrodes to reduce the thickness of the elastomeric material while expanding its area. This paper looks at manufacturing a micro soft polymer dielectric elastomer actuator utilizing two-photon polymerization 3D printing. The actuator contains micro channels that are filled with an electrode by using capillary action. A complex helical geometry is designed, printed, and tested for electrode filling capabilities. Quite a few obstacles are described in this paper including the use of a newly released two-photon polymerization resin which has limited supporting resources, as well as the complex helical geometry having a large compliance that vastly complicates its fabrication, post-processing, handling, electrode filling, electrode integration, and actuation testing. However, these challenges are overcome by using the standard printing recipes currently available for the resins, adding electrode isolation layers, and printing thicker elastomer zones for more structural support. The results found solidify the approach of filling microchannels with electrodes through capillary action and lead to further the focus and creation of multi-functional micro soft actuators.more » « less
An official website of the United States government
