skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exterior Powers in Iwasawa Theory
The Iwasawa theory of CM fields has traditionally concerned Iwasawa modules that are abelian pro-p Galois groups with ramification allowed at a maximal set of primes over p such that the module is torsion. A main conjecture for such an Iwasawa module describes its codimension one support in terms of a p-adic L-function attached to the primes of ramification. In this paper, we study more general and potentially much smaller modules that are quotients of exterior powers of Iwasawa modules with ramification at a set of primes over p by sums of exterior powers of inertia subgroups. We show that the higher codimension support of such quotients can be measured by finite collections of characteristic ideals of classical Iwasawa modules, hence by p-adic L-functions under the relevant CM main conjectures.  more » « less
Award ID(s):
1701785
PAR ID:
10382890
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of the European Mathematical Society
Volume:
24
Issue:
3
ISSN:
1435-9855
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We compare two maps that arise in study of the cohomology of global fields with ramification restricted to a finite set S of primes. One of these maps, which we call an S-reciprocity map, interpolates the values of cup products in S-ramified cohomology. In the case of p-ramified cohomology of the pth cyclotomic field for an odd prime p, we use this to exhibit an intriguing relationship between particular values of the cup product on cyclotomic p-units. We then consider higher analogues of the S-reciprocity map and relate their cokernels to the graded quotients in augmentation filtrations of Iwasawa modules. 
    more » « less
  2. Abstract Let $$E$$ be an elliptic curve defined over $${\mathbb{Q}}$$ of conductor $$N$$, $$p$$ an odd prime of good ordinary reduction such that $E[p]$ is an irreducible Galois module, and $$K$$ an imaginary quadratic field with all primes dividing $Np$ split. We prove Iwasawa main conjectures for the $${\mathbb{Z}}_{p}$$-cyclotomic and $${\mathbb{Z}}_{p}$$-anticyclotomic deformations of $$E$$ over $${\mathbb{Q}}$$ and $K,$ respectively, dispensing with any of the ramification hypotheses on $E[p]$ in previous works. The strategy employs base change and the two-variable zeta element associated to $$E$$ over $$K$$, via which the sought after main conjectures are deduced from Wan’s divisibility towards a three-variable main conjecture for $$E$$ over a quartic CM field containing $$K$$ and certain Euler system divisibilities. As an application, we prove cases of the two-variable main conjecture for $$E$$ over $$K$$. The aforementioned one-variable main conjectures imply the $$p$$-part of the conjectural Birch and Swinnerton-Dyer formula for $$E$$ if $$\operatorname{ord}_{s=1}L(E,s)\leq 1$$. They are also an ingredient in the proof of Kolyvagin’s conjecture and its cyclotomic variant in our joint work with Grossi [1]. 
    more » « less
  3. null (Ed.)
    Abstract Starting with the work of Serre, Katz, and Swinnerton-Dyer, theta operators have played a key role in the study of $$p$$-adic and $$\textrm{mod}\; p$$ modular forms and Galois representations. This paper achieves two main results for theta operators on automorphic forms on PEL-type Shimura varieties: (1) the analytic continuation at unramified primes $$p$$ to the whole Shimura variety of the $$\textrm{mod}\; p$$ reduction of $$p$$-adic Maass–Shimura operators a priori defined only over the $$\mu $$-ordinary locus, and (2) the construction of new $$\textrm{mod}\; p$$ theta operators that do not arise as the $$\textrm{mod}\; p$$ reduction of Maass–Shimura operators. While the main accomplishments of this paper concern the geometry of Shimura varieties and consequences for differential operators, we conclude with applications to Galois representations. Our approach involves a careful analysis of the behavior of Shimura varieties and enables us to obtain more general results than allowed by prior techniques, including for arbitrary signature, vector weights, and unramified primes in CM fields of arbitrary degree. 
    more » « less
  4. Abstract Tensor products usually have nonzero torsion. This is a central theme of Auslander's 1961 paper; the theme continues in the work of Huneke and Wiegand in the 1990s. The main focus in this article is on tensor powers of a finitely generated module over a local ring. Also, we study torsion-free modules N with the property that M ⊗ R N has nonzero torsion unless M is very special. An important example of such a module N is the Frobenius power p e R over a complete intersection domain R of characteristic p > 0. 
    more » « less
  5. Abstract A foundational principle in the study of modules over standard graded polynomial rings is that geometric positivity conditions imply vanishing of Betti numbers. The main goal of this paper is to determine the extent to which this principle extends to the nonstandard ‐graded case. In this setting, the classical arguments break down, and the results become much more nuanced. We introduce a new notion of Castelnuovo–Mumford regularity and employ exterior algebra techniques to control the shapes of nonstandard ‐graded minimal free resolutions. Our main result reveals a unique feature in the nonstandard ‐graded case: the possible degrees of the syzygies of a graded module in this setting are controlled not only by its regularity, but also by its depth. As an application of our main result, we show that given a simplicial projective toric variety and a module over its coordinate ring, the multigraded Betti numbers of are contained in a particular polytope when satisfies an appropriate positivity condition. 
    more » « less