skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model
Abstract. Monte Carlo (MC) methods have been widely used in uncertainty analysis and parameter identification for hydrological models. The main challenge with these approaches is, however, the prohibitive number of model runs required to acquire an adequate sample size, which may take from days to months – especially when the simulations are run in distributed mode. In the past, emulators have been used to minimize the computational burden of the MC simulation through direct estimation of the residual-based response surfaces. Here, we apply emulators of an MC simulation in parameter identification for a distributed conceptual hydrological model using two likelihood measures, i.e. the absolute bias of model predictions (Score) and another based on the time-relaxed limits of acceptability concept (pLoA). Three machine-learning models (MLMs) were built using model parameter sets and response surfaces with a limited number of model realizations (4000). The developed MLMs were applied to predict pLoA and Score for a large set of model parameters (95 000). The behavioural parameter sets were identified using a time-relaxed limits of acceptability approach, based on the predicted pLoA values, and applied to estimate the quantile streamflow predictions weighted by their respective Score. The three MLMs were able to adequately mimic the response surfaces directly estimated from MC simulations with an R2 value of 0.7 to 0.92. Similarly, the models identified using the coupled machine-learning (ML) emulators and limits of acceptability approach have performed very well in reproducing the median streamflow prediction during the calibration and validation periods, with an average Nash–Sutcliffe efficiency value of 0.89 and 0.83, respectively.  more » « less
Award ID(s):
2013047 1713901
PAR ID:
10382948
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
24
Issue:
9
ISSN:
1607-7938
Page Range / eLocation ID:
4641 to 4658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Assessing the uncertainty associated with projections of climate change impacts on hydrological processes can be challenging due to multiple sources of uncertainties within and between climate and hydrological models. Here we compare the effects of parameter uncertainty in a hydrological model to inter-model spread from climate projections on hydrological projections of urban streamflow in response to climate change. Four hourly climate model outputs from the RCP8.5 scenario were used as inputs to a distributed hydrologic model (SWMM) calibrated using a Bayesian approach to summarize uncertainty intervals for both model parameters and streamflow predictions. Continuous simulation of 100 years of streamflow generated 90 % prediction intervals for selected exceedance probabilities and flood frequencies prediction intervals from single climate models were compared to the inter climate model spread resulting from a single calibration of the SWMM model. There will be an increase in future flows with exceedance probabilities of 0.5 %-50 % and 2-year floods for all climate projections and all 21st century periods, for the modeled Ohio (USA) watershed. Floods with return periods of ≥ 5 years increase relative to the historical from mid-century (2046–2070) for most climate projections and parameter sets. Across the four climate models, the 90th percentile increase in flows and floods ranges from 17-108 % and 11–63 % respectively. Using multiple calibration parameter sets and climate projections helped capture the most likely hydrologic outcomes, as well as upper and lower bounds of future predictions. For this watershed, hydrological model parameter uncertainty was large relative to inter climate model spread, for near term moderate to high flows and for many flood frequencies. The uncertainty quantification and comparison approach developed here may be helpful in decision-making and design of engineering infrastructure in urban watersheds. 
    more » « less
  2. Abstract. Deep learning (DL) rainfall–runoff models outperform conceptual, process-based models in a range of applications. However, it remains unclear whether DL models can produce physically plausible projections of streamflow under climate change. We investigate this question through a sensitivity analysis of modeled responses to increases in temperature and potential evapotranspiration (PET), with other meteorological variables left unchanged. Previous research has shown that temperature-based PET methods overestimate evaporative water loss under warming compared with energy budget-based PET methods. We therefore assume that reliable streamflow responses to warming should exhibit less evaporative water loss when forced with smaller, energy-budget-based PET compared with temperature-based PET. We conduct this assessment using three conceptual, process-based rainfall–runoff models and three DL models, trained and tested across 212 watersheds in the Great Lakes basin. The DL models include a Long Short-Term Memory network (LSTM), a mass-conserving LSTM (MC-LSTM), and a novel variant of the MC-LSTM that also respects the relationship between PET and evaporative water loss (MC-LSTM-PET). After validating models against historical streamflow and actual evapotranspiration, we force all models with scenarios of warming, historical precipitation, and both temperature-based (Hamon) and energy-budget-based (Priestley–Taylor) PET, and compare their responses in long-term mean daily flow, low flows, high flows, and seasonal streamflow timing. We also explore similar responses using a national LSTM fit to 531 watersheds across the United States to assess how the inclusion of a larger and more diverse set of basins influences signals of hydrological response under warming. The main results of this study are as follows: The three Great Lakes DL models substantially outperform all process-based models in streamflow estimation. The MC-LSTM-PET also matches the best process-based models and outperforms the MC-LSTM in estimating actual evapotranspiration. All process-based models show a downward shift in long-term mean daily flows under warming, but median shifts are considerably larger under temperature-based PET (−17 % to −25 %) than energy-budget-based PET (−6 % to −9 %). The MC-LSTM-PET model exhibits similar differences in water loss across the different PET forcings. Conversely, the LSTM exhibits unrealistically large water losses under warming using Priestley–Taylor PET (−20 %), while the MC-LSTM is relatively insensitive to the PET method. DL models exhibit smaller changes in high flows and seasonal timing of flows as compared with the process-based models, while DL estimates of low flows are within the range estimated by the process-based models. Like the Great Lakes LSTM, the national LSTM also shows unrealistically large water losses under warming (−25 %), but it is more stable when many inputs are changed under warming and better aligns with process-based model responses for seasonal timing of flows. Ultimately, the results of this sensitivity analysis suggest that physical considerations regarding model architecture and input variables may be necessary to promote the physical realism of deep-learning-based hydrological projections under climate change. 
    more » « less
  3. Abstract Accurate soil moisture and streamflow data are an aspirational need of many hydrologically relevant fields. Model simulated soil moisture and streamflow hold promise but models require validation prior to application. Calibration methods are commonly used to improve model fidelity but misrepresentation of the true dynamics remains a challenge. In this study, we leverage soil parameter estimates from the Soil Survey Geographic (SSURGO) database and the probability mapping of SSURGO (POLARIS) to improve the representation of hydrologic processes in the Weather Research and Forecasting Hydrological modeling system (WRF‐Hydro) over a central California domain. Our results show WRF‐Hydro soil moisture exhibits increased correlation coefficients (r), reduced biases, and increased Kling‐Gupta Efficiencies (KGEs) across seven in situ soil moisture observing stations after updating the model's soil parameters according to POLARIS. Compared to four well‐established soil moisture data sets including Soil Moisture Active Passive data and three Phase 2 North American Land Data Assimilation System land surface models, our POLARIS‐adjusted WRF‐Hydro simulations produce the highest mean KGE (0.69) across the seven stations. More importantly, WRF‐Hydro streamflow fidelity also increases, especially in the case where the model domain is set up with SSURGO‐informed total soil thickness. The magnitude and timing of peak flow events are better captured,rincreases across nine United States Geological Survey stream gages, and the mean KGE across seven of the nine gages increases from 0.12 to 0.66. Our pre‐calibration parameter estimate approach, which is transferable to other spatially distributed hydrological models, can substantially improve a model's performance, helping reduce calibration efforts and computational costs. 
    more » « less
  4. null (Ed.)
    Statistical emulators are a key tool for rapidly producing probabilistic hazard analysis of geophysical processes. Given output data computed for a relatively small number of parameter inputs, an emulator interpolates the data, providing the expected value of the output at untried inputs and an estimate of error at that point. In this work, we propose to fit Gaussian Process emulators to the output from a volcanic ash transport model, Ash3d. Our goal is to predict the simulated volcanic ash thickness from Ash3d at a location of interest using the emulator. Our approach is motivated by two challenges to fitting emulators—characterizing the input wind field and interactions between that wind field and variable grain sizes. We resolve these challenges by using physical knowledge on tephra dispersal. We propose new physically motivated variables as inputs and use normalized output as the response for fitting the emulator. Subsetting based on the initial conditions is also critical in our emulator construction. Simulation studies characterize the accuracy and efficiency of our emulator construction and also reveal its current limitations. Our work represents the first emulator construction for volcanic ash transport models with considerations of the simulated physical process. 
    more » « less
  5. In the Anthropocene, humans have altered the properties and processes of hydrological systems across scales. The extent of human intervention in the landscape limits the utility of traditional hydrological modelling schemes. Since purely hydrological conceptual models no longer fit these systems, hydrologists must integrate key human interventions into conceptual models of human-modified catchments. Despite the advances in analyzing the observed changes within the hydrological cycle using bottom-up (or reductionist) modelling approaches, the aptitude of top-down hydrologic schemes for socio-hydrological system analysis is still untested. Here we show the potential of top-down hydrological modelling human modified watersheds using anthropogenic hydrological signatures. Specifically, we assess the ability of the top-down modelling method in human-modified catchments to improve the representation hydrological signatures (e.g. mean monthly runoff, flow duration curve) while ensuring a sufficient, but not excessive, level of complexity in model formulation. First, we develop new conceptual models which include human hydrological modifications commonly identified in the literature. Then, we link these new features in the conceptual models to features in the hydrological signatures. We apply the proposed methodology to the Lake Mendocino Watershed in Northern California, US. We compare a purely hydrological model developed for this catchment based on natural watershed properties using naturalized streamflow to a hydrological model of the human-modified catchment using observed streamflow. We anticipate that the proposed approach contributes to the development of detection and attribution frameworks for key anthropogenic changes of observed hydrological variability and improved model performance in human-modified catchments. 
    more » « less