skip to main content


Title: Independent component analysis for impairment mitigation in direct-detected Stokes vector modulation

In this paper we theoretically and experimentally demonstrate a novel adaptation of independent component analysis (ICA) for compensation of both cross-polarization and inter-symbol interference in a direct-detection link using Stokes vector modulation (SVM). SVM systems suffer from multiple simultaneous impairments that can be difficult to resolve with conventional optical channel DSP techniques. The proposed method is based on a six-dimensional adaptation of ICA that simultaneously de-rotates the SVM constellation, corrects distortion of constellation shape, and mitigates inter-symbol interference (ISI) at high symbol rates. Experimental results at 7.5 Gb/s and 15Gb/s show that the newly developed ICA-based equalizer achieves power penalties below ∼1 dB, compared to the ideal theoretical bit-error rate (BER) curves. At 30-Gb/s, where ISI is more severe, ICA still enables polarization de-rotation and BER < 10−5before error correction.

 
more » « less
Award ID(s):
1910140
NSF-PAR ID:
10383145
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
25
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 45350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: A novel adaptation of independent component analysis controls both cross-polarization and inter-symbol interference in a direct-detection link using Stokes vector modulation. 30-Gb/s experiments confirm polarization de-rotation and near-error-free transmission. 
    more » « less
  2. null (Ed.)
    Significant inter-symbol interference (ISI) challenges the achievement of reliable, high data-rate molecular communication via diffusion. In this paper, a hybrid modulation based on pulse position and concentration is proposed to mitigate ISI. By exploiting the time dimension, molecular concentration and position modulation (MCPM) increases the achievable data rate over conventional concentration and position-based modulations. In addition, unlike multi-molecule schemes, this hybrid scheme employs a single-molecule type and so simplifies transceiver implementations. In the paper, the optimal sequence detector of the proposed modulation is provided as well as a reduced complexity detector (two-stage, position-concentration detector, TPCD). A tractable cost function based on the TPCD detector is proposed and employed to optimize the design of the hybrid modulation scheme. In addition, the approximate probability of error for the MCPM-TPCD system is derived and is shown to be tight with respect to simulated performance. Numerically, MCPM shows improved performance over standard concentration and pulse position-based schemes in the low transmission power and high bit-rate regime. Furthermore, MCPM offers increased robustness against synchronization errors. 
    more » « less
  3. null (Ed.)
    The linearity of high-resolution current-steering digital-to-analog converters (DACs) is often limited by inter-symbol interference (ISI). While dynamic element matching (DEM) can be applied to convert a portion of the ISI to uncorrelated noise instead of nonlinear distortion, DEM alone fails to prevent ISI from at least introducing strong second-order nonlinear distortion. This paper addresses this problem by proposing, analyzing, and experimentally demonstrating a low-cost add-on technique, called ISI scrambling, that, in conjunction with DEM, causes a DAC’s ISI to be free of nonlinear distortion. The ISI scrambling technique is demonstrated in a 1-GS/s, 14-bit DEM DAC implemented in 90 nm CMOS technology. The DAC’s measured linearity is in line with the state of the art and its measured output power spectra closely match those predicted by the paper’s theoretical results. 
    more » « less
  4. One-bit digital-to-analog converters (DACs) are a practical and promising solution for reducing cost and power consumption in massive multiple-input multiple-output (MIMO) systems. However, the one-bit precoding problem is NP-hard and even more challenging in frequency-selective fading channels compared to the flat-fading scenario. While block-wise processing (BWP) can effectively address the inter-symbol-interference (ISI) in frequency-selective fading channels, its computational complexity and processing delay can be too high for practical implementation. An alternative solution to alleviate the processing complexity and delay issues is symbol-wise processing (SWP) which sequentially designs the transmit signals. However, existing SWP work leaves unwanted interference for later signal designs. In this paper, we propose an SWP approach which can efficiently address the ISI even at the symbol rate. The idea is to design the transmit signal to not only be beneficial for its time slot, but also to provide constructive interference for subsequent symbols. We develop two active ISI processing methods that significantly outperform a conventional approach, one of which that even outperforms the BWP approach at low SNR. 
    more » « less
  5. Independent component analysis (ICA) has found wide application in a variety of areas, and analysis of functional magnetic resonance imaging (fMRI) data has been a particularly fruitful one. Maximum likelihood provides a natural formulation for ICA and allows one to take into account multiple statistical properties of the data—forms of diversity. While use of multiple types of diversity allows for additional flexibility, it comes at a cost, leading to high variability in the solution space. In this paper, using simulated as well as fMRI-like data, we provide insight into the trade-offs between estimation accuracy and algorithmic consistency with or without deviations from the assumed model and assumptions such as the statistical independence. Additionally, we propose a new metric, cross inter-symbol interference, to quantify the consistency of an algorithm across different runs, and demonstrate its desirable performance for selecting consistent run compared to other metrics used for the task. 
    more » « less