skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal Delay-Outage Analysis for Noise-Limited Wireless Networks with Caching, Computing, and Communications
Performance assessment and optimization for net-works jointly performing caching, computing, and communica-tion (3C) has recently drawn significant attention because many emerging applications require 3C functionality. However, studies in the literature mostly focus on the particular algorithms and setups of such networks, while their theoretical understanding and characterization has been less explored. To fill this gap, this paper conducts the asymptotic (scaling-law) analysis for the delay-outage tradeoff of noise-limited wireless edge networks with joint 3C. In particular, assuming the user requests for different tasks following a Zipf distribution, we derive the analytical expression for the optimal caching policy. Based on this, we next derive the closed-form expression for the optimum outage probability as a function of delay and other network parameters for the case that the Zipf parameter is smaller than 1. Then, for the case that the Zipf parameter is larger than 1, we derive the closed-form expressions for upper and lower bounds of the optimum outage probability. We provide insights and interpretations based on the derived expressions. Computer simulations validate our analytical results and insights.  more » « less
Award ID(s):
2148315
PAR ID:
10383152
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Wireless Communications
ISSN:
1536-1276
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Performance assessment and optimization for net-works jointly performing caching, computing, and communica-tion (3C) has recently drawn significant attention because many emerging applications require 3C functionality. However, studies in the literature mostly focus on the particular algorithms and setups of such networks, while the theoretical understanding and characterization of such networks has been less explored. To fill this gap, this paper conducts the asymptotic (scaling-law) analysis for the delay-outage tradeoff of noise-limited wireless edge networks with joint 3C. In particular, we derive closed-form expressions for the optimum outage probability as function of delay and other network parameters via first obtaining the outage probability expression and then deriving the optimal caching policy. We provide insights and interpretations based on the derived expressions. Computer simulations validate our analytical results and insights. 
    more » « less
  2. Recently, wireless communication technologies, such as Wireless Local Area Networks (WLANs), have gained increasing popularity in industrial control systems (ICSs) due to their low cost and ease of deployment, but communication delays associated with these technologies make it unsuitable for critical real-time and safety applications. To address concerns on network-induced delays of wireless communication technologies and bring their advantages into modern ICSs, wireless network infrastructure based on the Parallel Redundancy Protocol (PRP) has been proposed. Although application-specific simulations and measurements have been conducted to show that wireless network infrastructure based on PRP can be a viable solution for critical applications with stringent delay performance constraints, little has been done to devise an analytical framework facilitating the adoption of wireless PRP infrastructure in miscellaneous ICSs. Leveraging the deterministic network calculus (DNC) theory, we propose to analytically derive worst-case bounds on network- induced delays for critical ICS applications. We show that the problem of worst-case delay bounding for a wireless PRP network can be solved by performing network-calculus-based analysis on its non-feedforward traffic pattern. Closed-form expressions of worst-case delays are derived, which has not been found previously and allows ICS architects/designers to compute worst- case delay bounds for ICS tasks in their respective application domains of interest. Our analytical results not only provide insights into the impacts of network-induced delays on latency- critical tasks but also allow ICS architects/operators to assess whether proper wireless RPR network infrastructure can be adopted into their systems. 
    more » « less
  3. Caching of video files on user devices, combined with file exchange through device-to-device (D2D) communications is a promising method for increasing the throughput of wireless networks. Previous theoretical investigations showed that throughput can be increased by orders of magnitude, but assumed a Zipf distribution for modeling the popularity distribution, which was based on observations in wired networks. Thus the question whether cache-aided D2D video distribution can provide in practice the benefits promised by existing theoretical literature remains open. To answer this question, we provide new results specifically for popularity distributions of video requests of mobile users. Based on an extensive real-world dataset, we adopt a generalized distribution, known as Mandelbrot-Zipf (MZipf) distribution. We first show that this popularity distribution can fit the practical data well. Using this distribution, we analyze the throughput–outage tradeoff of the cache-aided D2D network and show that the scaling law is identical to the case of Zipf popularity distribution when the MZipf distribution is sufficiently skewed, implying that the benefits previously promised in the literature could indeed be realized in practice. To support the theory, practical evaluations using numerical experiments are provided, and show that the cache-aided D2D can outperform the conventional unicasting from base stations. 
    more » « less
  4. Emerging wireless technologies are envisioned to support a variety of applications that require simultaneously maintaining low latency and high reliability. Non-orthogonal multiple access techniques constitute one candidate for grant-free transmission alleviating the signaling requirements for uplink transmissions. In open-loop transmissions over fading channels, in which the transmitters do not have access to the channel state information, the existing approaches are prone to facing frequent outage events. Such outage events lead to repeated re-transmissions of the duplicate information packets, penalizing the latency. This paper proposes a multi-access broadcast approach in which each user splits its information stream into several information layers, each adapted to one possible channel state. This approach facilitates preventing outage events and improves the overall transmission latency. Based on the proposed approach, the average queuing delay of each user is analyzed for different arrival processes at each transmitter. First, for deterministic arrivals, closed-form lower and upper bounds on the average delay are characterized analytically. Secondly, for Poisson arrivals, a closed-form expression for the average delay is delineated using the Pollaczek-Khinchin formula. Based on the established bounds, the proposed approach achieves less average delay than single-layer outage approaches. Under optimal power allocation among the encoded layers, numerical evaluations demonstrate that the proposed approach significantly minimizes average sum delays compared to traditional outage approaches, especially under high arrival rates. 
    more » « less
  5. null (Ed.)
    Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to its capability of providing enhanced degrees of freedom for DoAs that can be resolved. Additionally, deployment of one-bit Analog-to-Digital Converters (ADCs) has become an important topic in array processing, as it offers both a low-cost and a low-complexity implementation. Although the problem of DoA estimation from one-bit SLA measurements has been studied in some prior works, its analytical performance has not yet been investigated and characterized. In this paper, to provide valuable insights into the performance of DoA estimation from one-bit SLA measurements, we derive an asymptotic closed-form expression for the performance of One-Bit Co-Array-Based MUSIC (OBCAB-MUSIC). Further, numerical simulations are provided to validate the asymptotic closed-form expression for the performance of OBCAB-MUSIC and to show an interesting use case of it in evaluating the resolution of OBCAB-MUSIC. 
    more » « less