skip to main content

Title: Neural Networks with Physics-Informed Architectures and Constraints for Dynamical Systems Modeling
Effective inclusion of physics-based knowledge into deep neural network models of dynamical sys- tems can greatly improve data efficiency and generalization. Such a priori knowledge might arise from physical principles (e.g., conservation laws) or from the system’s design (e.g., the Jacobian matrix of a robot), even if large portions of the system dynamics remain unknown. We develop a framework to learn dynamics models from trajectory data while incorporating a priori system knowledge as inductive bias. More specifically, the proposed framework uses physics-based side information to inform the structure of the neural network itself, and to place constraints on the values of the outputs and the internal states of the model. It represents the system’s vector field as a composition of known and unknown functions, the latter of which are parametrized by neural networks. The physics-informed constraints are enforced via the augmented Lagrangian method during the model’s training. We experimentally demonstrate the benefits of the proposed approach on a variety of dynamical systems – including a benchmark suite of robotics environments featur- ing large state spaces, non-linear dynamics, external forces, contact forces, and control inputs. By exploiting a priori system knowledge during training, the proposed approach learns to predict the system dynamics two orders of magnitude more accurately than a baseline approach that does not include prior knowledge, given the same training dataset.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Firoozi, R.; Mehr, N.; Yel, E.; Antonova, R.; Bohg, J.; Schwager, M.; Kochenderfer, M.
Date Published:
Journal Name:
4th Annual Conference on Learning for Dynamics and Control
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Long‐lead forecasting for spatio‐temporal systems can entail complex nonlinear dynamics that are difficult to specify a priori. Current statistical methodologies for modeling these processes are often highly parameterized and, thus, challenging to implement from a computational perspective. One potential parsimonious solution to this problem is a method from the dynamical systems and engineering literature referred to as an echo state network (ESN). ESN models usereservoir computingto efficiently compute recurrent neural network forecasts. Moreover, multilevel (deep) hierarchical models have recently been shown to be successful at predicting high‐dimensional complex nonlinear processes, particularly those with multiple spatial and temporal scales of variability (such as those we often find in spatio‐temporal environmental data). Here, we introduce a deep ensemble ESN (D‐EESN) model. Despite the incorporation of a deep structure, the presented model is computationally efficient. We present two versions of this model for spatio‐temporal processes that produce forecasts and associated measures of uncertainty. The first approach utilizes a bootstrap ensemble framework, and the second is developed within a hierarchical Bayesian framework (BD‐EESN). This more general hierarchical Bayesian framework naturally accommodates non‐Gaussian data types and multiple levels of uncertainties. The methodology is first applied to a data set simulated from a novel non‐Gaussian multiscale Lorenz‐96 dynamical system simulation model and, then, to a long‐lead United States (U.S.) soil moisture forecasting application. Across both applications, the proposed methodology improves upon existing methods in terms of both forecast accuracy and quantifying uncertainty.

    more » « less
  2. Neural ordinary differential equations (NODEs) -- parametrizations of differential equations using neural networks -- have shown tremendous promise in learning models of unknown continuous-time dynamical systems from data. However, every forward evaluation of a NODE requires numerical integration of the neural network used to capture the system dynamics, making their training prohibitively expensive. Existing works rely on off-the-shelf adaptive step-size numerical integration schemes, which often require an excessive number of evaluations of the underlying dynamics network to obtain sufficient accuracy for training. By contrast, we accelerate the evaluation and the training of NODEs by proposing a data-driven approach to their numerical integration. The proposed Taylor-Lagrange NODEs (TL-NODEs) use a fixed-order Taylor expansion for numerical integration, while also learning to estimate the expansion's approximation error. As a result, the proposed approach achieves the same accuracy as adaptive step-size schemes while employing only low-order Taylor expansions, thus greatly reducing the computational cost necessary to integrate the NODE. A suite of numerical experiments, including modeling dynamical systems, image classification, and density estimation, demonstrate that TL-NODEs can be trained more than an order of magnitude faster than state-of-the-art approaches, without any loss in performance. 
    more » « less
  3. Abstract Recurrent neural networks have seen widespread use in modeling dynamical systems in varied domains such as weather prediction, text prediction and several others. Often one wishes to supplement the experimentally observed dynamics with prior knowledge or intuition about the system. While the recurrent nature of these networks allows them to model arbitrarily long memories in the time series used in training, it makes it harder to impose prior knowledge or intuition through generic constraints. In this work, we present a path sampling approach based on principle of Maximum Caliber that allows us to include generic thermodynamic or kinetic constraints into recurrent neural networks. We show the method here for a widely used type of recurrent neural network known as long short-term memory network in the context of supplementing time series collected from different application domains. These include classical Molecular Dynamics of a protein and Monte Carlo simulations of an open quantum system continuously losing photons to the environment and displaying Rabi oscillations. Our method can be easily generalized to other generative artificial intelligence models and to generic time series in different areas of physical and social sciences, where one wishes to supplement limited data with intuition or theory based corrections. 
    more » « less
  4. We propose a Bayesian decision making framework for control of Markov Decision Processes (MDPs) with unknown dynamics and large, possibly continuous, state, action, and parameter spaces in data-poor environments. Most of the existing adaptive controllers for MDPs with unknown dynamics are based on the reinforcement learning framework and rely on large data sets acquired by sustained direct interaction with the system or via a simulator. This is not feasible in many applications, due to ethical, economic, and physical constraints. The proposed framework addresses the data poverty issue by decomposing the problem into an offline planning stage that does not rely on sustained direct interaction with the system or simulator and an online execution stage. In the offline process, parallel Gaussian process temporal difference (GPTD) learning techniques are employed for near-optimal Bayesian approximation of the expected discounted reward over a sample drawn from the prior distribution of unknown parameters. In the online stage, the action with the maximum expected return with respect to the posterior distribution of the parameters is selected. This is achieved by an approximation of the posterior distribution using a Markov Chain Monte Carlo (MCMC) algorithm, followed by constructing multiple Gaussian processes over the parameter space for efficient prediction of the means of the expected return at the MCMC sample. The effectiveness of the proposed framework is demonstrated using a simple dynamical system model with continuous state and action spaces, as well as a more complex model for a metastatic melanoma gene regulatory network observed through noisy synthetic gene expression data. 
    more » « less
  5. We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. Moreover, we apply contemporary statistical estimation techniques to certify the system’s safety through persistent constraint satisfaction with high probability. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods. 
    more » « less