skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fluorescence spectroscopy studies of crossed aldol reactions: a reactive Nile red dye reveals catalyst-dependent product formation
The synthesis of a new Nile red derivative incorporating a reactive aldehyde moiety (NR-CHO) is reported and its use in spectroscopic studies of heterogeneous catalyst activity in crossed aldol reactions is demonstrated. 1 H and 13 C NMR, and high-resolution mass spectrometry confirmed the desired NR-CHO was obtained. Mg-Zr-Cs doped silica (Cs(Zr,Mg)-SiO 2 ) was employed as the catalyst and its performance was compared to that of commercially available MgO. Fumed silica was used as a control. Aldol reactions with acetone and acetophenone were run in 4 : 1 (v/v) DMSO : ketone solutions in the presence of both dilute (1 μM) and concentrated (1 mM) NR-CHO. NR-CHO fluorescence spectra were acquired as the reactions progressed. Shifts in its emission spectrum are used to distinguish the products formed and to characterize the reaction rate. The dye exhibits different behavior that defines whether the reaction stops at the addition (alcohol) product, or forms both addition and condensation (olefin) products, providing valuable initial information on catalyst activity. The assignment of addition and condensation products is supported by thin layer chromatography, high performance liquid chromatography (HPLC), and HPLC-mass spectrometry data. Product formation is shown to depend upon the catalyst employed, with the Cs(Zr,Mg)-SiO 2 yielding both addition and condensation products, while MgO yields primarily addition products. The advantages of NR-CHO in spectroscopic studies of aldol reactions are also demonstrated relative to commercially available 3-perylenecarboxaldehyde. The NR-CHO reported here and the results obtained will facilitate a broad range of both ensemble and single molecule spectroscopic investigations of heterogeneous catalysis in crossed aldol reactions in the future.  more » « less
Award ID(s):
1664664
PAR ID:
10383210
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Catalysis Science & Technology
Volume:
10
Issue:
16
ISSN:
2044-4753
Page Range / eLocation ID:
5579 to 5592
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Suzuki−Miyaura cross‐coupling reactions are used to modify the tyrosine residues onBombyx morisilkworm silk proteins using a water‐soluble palladium catalyst. First, model reactions using tyrosine derivatives are screened to determine optimal reaction conditions. For these reactions, a variety of aryl boronic acids, solvents, buffers, and temperature ranges are explored. Qualitative information on the reaction progress is collected via high‐performance liquid chromatography (HPLC), mass spectrometry (MS), and nuclear magnetic resonance (NMR). Optimized reactions are then applied to silk proteins. It is demonstrated the ability to modify silk fibroin in solution by first iodinating the tyrosine residues on the protein, and then carrying out Suzuki‐Miyaura reactions with a variety of boronic acid derivatives. Modification of silk is confirmed with NMR, ion‐exchange chromatography (IEC), UV‐vis, and infrared spectroscopy (IR). 
    more » « less
  2. Despite their atmospheric abundance, heterogeneous and multiphase reactions of carbonyl compounds are poorly understood. In this study, we investigate the surface adsorption and surface chemistry of methyl ethyl ketone (MEK), the second most abundant ketone in the atmosphere, with several mineral oxide surfaces including SiO 2 , α-Fe 2 O 3 and TiO 2 . In particular, the chemistry of MEK with these common components of mineral dust, under both dry and high relative humidity (RH%) conditions, has been investigated. Furthermore, reactions of adsorbed MEK with gas-phase NO 2 were also examined. We show that MEK molecularly and reversibly adsorbs on SiO 2 whereas irreversible adsorption occurs on both α-Fe 2 O 3 and TiO 2 surfaces, followed by the formation of higher molar mass species resulting from dimerization and oligomerization reactions. Isotope labeling experiments confirmed the incorporation of H atoms from surface hydroxyl groups and strongly adsorbed water into these oligomer products. Most interesting is that at 80% RH, oligomer formation on α-Fe 2 O 3 shifts toward a higher relative abundance of MEK tetramer relative to the dimer while on TiO 2 there was no change in product distribution. In the presence of gas-phase NO 2 , MEK undergoes degradation to formaldehyde and acetaldehyde, followed by the formation of aldol condensation products of these aldehydes on the α-Fe 2 O 3 surface. Overall, this study provides mechanistic insights on mineralogy-specific heterogeneous chemistry of a prevalent and atmospherically abundant ketone. 
    more » « less
  3. null (Ed.)
    Palladium catalyzed cross-coupling reactions represent a significant advancement in contemporary organic synthesis as these reactions are of strategic importance in the area of pharmaceutical drug discovery and development. Supported palladium-based catalysts are highly sought-after in carbon–carbon bond forming catalytic processes to ensure catalyst recovery and reuse while preventing product contamination. This paper reports the development of heterogeneous Pd-based bimetallic catalysts supported on fumed silica that have high activity and selectivity matching those of homogeneous catalysts, eliminating the catalyst's leaching and sintering and allowing efficient recycling of the catalysts. Palladium and base metal (Cu, Ni or Co) contents of less than 1.0 wt% loading are deposited on a mesoporous fumed silica support (surface area SA BET = 350 m 2 g −1 ) using strong electrostatic adsorption (SEA) yielding homogeneously alloyed nanoparticles with an average size of 1.3 nm. All bimetallic catalysts were found to be highly active toward Suzuki cross-coupling (SCC) reactions with superior activity and stability for the CuPd/SiO 2 catalyst. A low CuPd/SiO 2 loading (Pd: 0.3 mol%) completes the conversion of bromobenzene and phenylboronic acid to biphenyl in 30 minutes under ambient conditions in water/ethanol solvent. In contrast, monometallic Pd/SiO 2 (Pd: 0.3 mol%) completes the same reaction in three hours under the same conditions. The combination of Pd with the base metals helps in retaining the Pd 0 status by charge donation from the base metals to Pd, thus lowering the activation energy of the aryl halide oxidative addition step. Along with its exceptional activity, CuPd/SiO 2 exhibits excellent recycling performance with a turnover frequency (TOF) of 280 000 h −1 under microwave reaction conditions at 60 °C. Our study demonstrates that SEA is an excellent synthetic strategy for depositing ultra-small Pd-based bimetallic nanoparticles on porous silica for SCC. This avenue not only provides highly active and sintering-resistant catalysts but also significantly lowers Pd contents in the catalysts without compromising catalytic activity, making the catalysts very practical for large-scale applications. 
    more » « less
  4. The use of 18-crown-6 (18-c-6) in place of 2.2.2-cryptand (crypt) in rare earth amide reduction reactions involving potassium has proven to be crucial in the synthesis of Ln( ii ) complexes and isolation of their CO reduction products. The faster speed of crystallization with 18-c-6 appears to be important. Previous studies have shown that reduction of the trivalent amide complexes Ln(NR 2 ) 3 (R = SiMe 3 ) with potassium in the presence of 2.2.2-cryptand (crypt) forms the divalent [K(crypt)][Ln II (NR 2 ) 3 ] complexes for Ln = Gd, Tb, Dy, and Tm. However, for Ho and Er, the [Ln(NR 2 ) 3 ] 1− anions were only isolable with [Rb(crypt)] 1+ counter-cations and isolation of the [Y II (NR 2 ) 3 ] 1− anion was not possible under any of these conditions. We now report that by changing the potassium chelator from crypt to 18-crown-6 (18-c-6), the [Ln(NR 2 ) 3 ] 1− anions can be isolated not only for Ln = Gd, Tb, Dy, and Tm, but also for Ho, Er, and Y. Specifically, these anions are isolated as salts of a 1 : 2 potassium : crown sandwich cation, [K(18-c-6) 2 ] 1+ , i.e. [K(18-c-6) 2 ][Ln(NR 2 ) 3 ]. The [K(18-c-6) 2 ] 1+ counter-cation was superior not only in the synthesis, but it also allowed the isolation of crystallographically-characterizable products from reactions of CO with the [Ln(NR 2 ) 3 ] 1− anions that were not obtainable from the [K(crypt)] 1+ analogs. Reaction of CO with [K(18-c-6) 2 ][Ln(NR 2 ) 3 ], generated in situ , yielded crystals of the ynediolate products, {[(R 2 N) 3 Ln] 2 (μ-OCCO)} 2− , which crystallized with counter-cations possessing 2 : 3 potassium : crown ratios, i.e. {[K 2 (18-c-6) 3 ]} 2+ , for Gd, Dy, Ho. In contrast, reaction of CO with a solution of isolated [K(18-c-6) 2 ][Gd(NR 2 ) 3 ], produced crystals of an enediolate complex isolated with a counter-cation with a 2 : 2 potassium : crown ratio namely [K(18-c-6)] 2 2+ in the complex [K(18-c-6)] 2 {[(R 2 N) 2 Gd 2 (μ-OCHCHO) 2 ]}. 
    more » « less
  5. Catalytic performance of Ni/zeolite, Ni-Fe/zeolite, and Ni-Fe-Mg/zeolite catalysts were investigated in steam reforming of toluene as a biomass tar model compound to explore promotional effect of MgO and Fe on Ni/ zeolite support. The Ni-Fe-Mg/zeolite catalysts with optimum metallic composition showed higher catalytic performance over corresponding monometallic Ni and Fe catalysts and Ni-Fe/zeolite (bimetallic) catalysts. Addition of Mg to Ni-Fe/zeolite catalyst enhanced the tar reforming reactions and increased the carbon de- position tolerance. The results suggest that Ni-Fe/zeolite and Ni-Fe-Mg/zeolite catalysts have great potential for application in the steam reforming of biomass tar. 
    more » « less