skip to main content


Title: STUDENTS’ REORGANIZATIONS OF VARIATIONAL, COVARIATIONAL, AND MULTIVARIATIONAL REASONING
In this paper we examine sixth grade students’ constructions and reorganizations of variational, covariational, and multivariational reasoning as they engaged in dynamic digital tasks exploring the science phenomenon of weather. We present case studies of two students from a larger whole-class design experiment to illustrate students’ forms of reasoning and the type of design that supported those constructions and reorganizations. We argue that students constructed multivariational relationships by bridging, transforming, and reforming their reasoning and that the nature of the multivariational relationship being constructed affected this process.  more » « less
Award ID(s):
1742125
NSF-PAR ID:
10383421
Author(s) / Creator(s):
Editor(s):
Olanoff, D.; Johnson, K.; Spitzer, S.
Date Published:
Journal Name:
Proceedings of the forty-third annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Instructional designs that include two or more artifacts (digital manipulatives, tables, graphs) have shown to support students’ development of reasoning about covarying quantities. However, research often neglects how this development occurs from the student point of view during the interactions with these artifacts. An analysis from this lens could significantly justify claims about what designs really support students’ covariational reasoning. Our study makes this contribution by examining the “messiness” of students’ transitions as they interact with various artifacts that represent the same covariational situation. We present data from a design experiment with a pair of sixth-grade students who engaged with the set of artifacts we designed (simulation, table, and graph) to explore quantities that covary. An instrumental genesis perspective is followed to analyze students’ transitions from one artifact to the next. We utilize the distinction between static and emergent shape thinking to make inferences about their reorganizations of reasoning as they (re-)form a system of instruments that integrates previously developed instruments. Our findings provide an insight into the nature of the synergy of artifacts that offers a constructive space for students to shape and reorganize their meanings about covarying quantities. Specifically, we propose different subcategories of complementarities and antagonisms between artifacts that have the potential to make this synergy productive. 
    more » « less
  2. We describe a functional programming approach to the design of outlines of eighteenth-century string instruments. The approach is based on the research described in François Denis's book, Traité de lutherie . The programming vernacular for Denis's instructions, which we call functional geometry , is meant to reiterate the historically justified language and techniques of this musical instrument design. The programming metaphor is entirely Euclidean, involving straightedge and compass constructions, with few (if any) numbers, and no Cartesian equations or grid. As such, it is also an interesting approach to teaching programming and mathematics without numerical calculation or equational reasoning. The advantage of this language-based, functional approach to lutherie is founded in the abstract characterization of common patterns in instrument design. These patterns include not only the abstraction of common straightedge and compass constructions, but of higher-order conceptualization of the instrument design process. We also discuss the role of arithmetic, geometric, harmonic, and subharmonic proportions, and the use of their rational approximants. 
    more » « less
  3. This paper discusses the potential of two computational modeling approaches in moving students from simple linear causal reasoning to applying more complex aspects of systems thinking (ST) in explanations of scientific phenomena. While linear causal reasoning can help students understand some natural phenomena, it may not be sufficient for understanding more complex issues such as global warming and pandemics, which involve feedback, cyclic patterns, and equilibrium. In contrast, ST has shown promise as an approach for making sense of complex problems. To facilitate ST, computational modeling tools have been developed, but it is not clear to what extent different approaches promote specific aspects of ST and whether scaffolding such thinking should start with supporting students first in linear causal reasoning before moving to more complex causal dimensions. This study compares two computational modeling approaches, static equilibrium and system dynamics modeling, and their potential to engage students in applying ST aspects in their explanations of the evaporative cooling phenomenon. To make such a comparison we analyzed 10th grade chemistry students’ explanations of the phenomenon as they constructed and used both modeling approaches. The findings suggest that using a system dynamics approach prompts more complex reasoning aligning with ST aspects. However, some students remain resistant to the application of ST and continue to favor linear causal explanations with both modeling approaches. This study provides evidence for the potential of using system dynamics models in applying ST. In addition, the results raise questions about whether linear causal reasoning may serve as a scaffold for engaging students in more sophisticated types of reasoning. 
    more » « less
  4. Abstract Background

    In scientific inquiry learning, students often have difficulties conducting hypothetical reasoning with multiple intertwined variables. Concept maps have a potential to facilitate complex thinking and reasoning. However, there is little investigation into the content of student‐constructed concept maps and its association with inquiry task performance.

    Objectives

    This study explored students' concept mapping style and its association with task performance in computer‐based inquiry learning.

    Methods

    An exploratory study was conducted with 80 Grade 11 students, who collaboratively constructed concept maps in a free style to support inquiry learning with a virtual ecosystem. Student‐constructed concept maps was analysed by firstly identifying different types of propositions formed in the maps and then determining the style of each concept map based on the dominant type of propositions in the map. Finally, the association between the concept map style and inquiry task performance was explored.

    Results and Conclusions

    Two major concept map styles were identified: (1) knowledge‐oriented concept maps (KCMs) mainly representing problem‐related subject knowledge as a set of concepts and their relationships, and (2) problem‐oriented concept maps (PCMs) mainly representing problem situation as a sequence of changes and their causal relationships. Compared with those constructing KCMs, the students constructing PCMs formed higher‐quality propositions in their maps and performed better in hypothesising, reasoning, and drawing conclusions in the inquiry task.

    Implications

    Besides KCMs, students in inquiry learning can be encouraged to construct PCMs to foster effective thinking and reasoning; that is, constructing a concept map to represent the problem situation as a sequence of changes and the causal relationships between the changes.

     
    more » « less
  5. N/A (Ed.)
    Background:Engineering's introduction into K–12 classrooms has been purported to support meaningful and inclusive learning environments. However, teachers must contend with dominant discourses embedded in US schooling that justify inequitable distributions of resources. Purpose:Drawing on Gee's notion of discourses, we examine how teachers incorporate language legitimizing socially and culturally constructed values and beliefs. In particular, we focus on the discourse of ability hierarchy—reflecting dominant values of sorting and ranking students based on perceived academic abilities—and the discourse of individual blame—reflecting dominant framings of educational problems as solely the responsibility of individual students or families. We aim to understand how these discourses surface in teachers' reasoning about teaching engineering. Method:We interviewed 15 teachers enrolled in an online graduate program in engineering education. Utilizing critical discourse analysis, we analyzed how teachers drew on discourses of blame and ability hierarchy when reasoning about problems of practice in engineering. Results:Teachers drew on engineering education concepts to reinforce dominant discourses (echoing specific language and preserving given roles) as well as to disrupt (utilizing different language or roles that [implicitly] challenge) dominant discourses. Importantly, teachers could also retool discourses of ability hierarchy (arguing for a more equitable distribution of resources but problematically preserving the values of ranking and sorting students). Conclusions:K–12 schooling's sociohistorical context can shape how teachers make sense of engineering in ways that implicate race, gender, disability, and language, suggesting a need to grapple with how discourses from schooling—and engineering culture—maintain marginalizing environments for students. 
    more » « less